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Absence of a tough-brittle transition in the statistical fracture of unidirectional
composite tapes under local load sharing
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We show analytically that a planar, unidirectional fibrous composite, which is an idealized random hetero-
geneous material consisting of stiff fibers of random strength embedded in parallel in a compliant matrix,
fractures in a brittle manner when the fibers engage in idealized, local load sharing. Both the fibers and matrix
are assumed time independent. This brittle behavior occurs irrespective of the dis@milbility) in fiber
strengths, which we represent by a power distribution function. Our result goes far toward settling a long-
standing question, not resolvable by computer simulations, regarding whether or not the brittle failure regime
gives way to a tough, ductile-like failure regime as the variability in fiber strengths is increased past some
threshold. We establish this result by calculating upper and lower bounding distributions for composite strength
using the Chen-Stein theorem of extreme value statistical theory when failure events are dependent. These
bounds both have weakest link character and, by comparing them with empirical strength distributions gener-
ated by Monte Carlo simulations, we find that the upper bound is a good approximation to the actual failure
probability when the fiber strength variability is large. This regime is where previous models have broken
down, raising speculation about a brittle-ductile transition.

DOI: 10.1103/PhysReVvE.69.026102 PACS nunider62.20.Mk, 05.40-a
. INTRODUCTION n—r surviving fibers after the failure af fibers is assumed
to be
In the study of fracture processes and ultimate strength of
random heterogeneous materials, the tough-brittle transition KELS_ n @
BlS_____

is of great importance. This transition, abrupt or otherwise,
refers to the qualitative change in the failure mode with mi-
crostructural parameter values from one in which materiaSuch a redistribution of applied load among surviving fibers
failure occurs by the eventual formation and catastrophids called equal load sharing(ELS). In such a bundle, the
propagation of a single craclocalized damage evolutipno ~ Stress concentration on an intact fiber is independent of its
one in which dispersed microscopic cracks form, grow staPhysical proximity to a broken fiber and therefore, under
bly, and coalesce to bring about material failddispersed increasing .applled load, tough failure occurs by dispersed
damage evolution The ratio of the volume of damage prior fiber breaking, up to some critical fracnon,' followed _by ap-
to unstable crack growth to the total volume is small in theParent catastrophic coalescence of the dispersed fiber fail-
former mode, while it is of the order of 1 in the latter mode. Y¢S I_Damels_[l] established thr_ough a_highly nqntrlwal
The failure mode—brittle or tough—exhibited by the ran- analysis that iin is large and the fiber strengths are indepen-

n—r’

dom heterogeneous material determines its strength distribu- nr ne
tion, and this makes the study of the tough-brittle transition
interesting from a technological standpoint as tough behavior 'T\ 'T‘
is usually preferred. C——————
An example of a random heterogeneous material that fails
only by the tough mode is theose bundle of fiberstudied ﬁll’er (e
by Daniels[1]. It consists of an array of fibers of equal L L
length whose strengths are randomly distributed, tensioned matrix  FepHARHEHEE AL 120
between rigid horizontal supporf&ig. 1(a)]. Material fail- ' HHE T
ure, arising from random fiber breakages, is thus a stochastic —— 1
process. After breaking, a fiber carries no load; its share of ‘l, \1,
the applied load is assumed to be distributed evenly among
the surviving fibers, i.e., the load concentration in each of the ne ne
(a) (b)
*Electronic address: mahesh@lanl.gov FIG. 1. (a) The loose bundle of fibers of Danidl§], and(b) a
TElectronic address: slp6@cornell.edu planar composite material with fibers embedded in a matrix.
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dent and identically distributed.i.d.) according to the dis- treating the composite as a serial arrangement of mechani-
tribution function F(x), such that lim,.x[1—F(x)]=0, cally and statistically independent bundles each of length 2
then the strength of a loose bundle of fibers is Gaussian witfFig. 1(b)]. This so-called chain-of-bundles assumption iden-
mean tifies composite failure as the failure of its weakest bundle. If
ann-fiber composite of length is subjected to tensile load
X*[1-F(x*)] (20 per fiber and the strength distribution for each of its
=[L/(26)] bundles isG,(x), then by the chain-of-bundles
assumption the composite strength distribution is given by

X* JF (X[ 1=F(x) 1/, 3 Hun(¥)=1—[1=Gn(x)]™, x=0. ()

and standard deviation

wherex* is the point where the functiox] 1—F(x)] has its
maximum valuglassumed unigyeNote thatx here denotes
the applied loader fiber, i.e., the total load applied to the
composite ix. The above statistics refer to

More generally, load transfer from broken to intact fibers Within a bundle in which some fibers are broken, various

will dependupon their mutual proximity, such as when the 50| |5ad sharing models have been proposed in the litera-
stiff fibers of the loose bundle are embedded in a complianf ;o for how the total applied loadx is distributed among

matrix to form a compositgFig. 1(b)]. If the matrix has a the intact fibers. The simplest model, used in this work, is the
sufficiently large shear modulus, the load dropped by a brojyejizeq local load sharing.LS) model due to Harlow and
ken fiber will mostly be communicated to its neighboring ppgenix[s]. In this model, the overload on an intact fiber
intact fibers through matrix shear. In such a composite, W%djacent to¢ broken fibers(counting on both sides, except
will assume the matrix to always remain intact, and identifyfOr the first and last fibers in the composi@il along the
composite damage with fiber breakage, and a compositgiypiane of a bundle is assumed tokg=1+ (€/2). This is
crack with a sequence of neighboring fiber breaks *near”qqjivalent to assuming that each broken fiber transfers half
each otherto be made precise shortlyUnlike in ELS, @ ji5 |54 to each of its two nearest intact neighbors in the
formula giving the composite strength distribution, given aNgame transverse plane. If the load applied to the composite
arbitrary fiber strength distributioR(x), has been elusive o fiper isx, an intact fiber adjacent té broken fibers will
when load sharing is localized. Special cases of this proble arry load[1+(¢/2)]x. A more realistic model for elastic
have therefore been pursued over the years by various repars in an elastic matrix is due to Hedgepé@). While

searchers, with restrictive assumptions on fiber strength St'ﬁedgepeth’s model assigns stress concentrations to the fibers

tistics and interaction between broken and intact fibers. adjacent to a cluster of breaks, some of the load is distributed

Numerous works using either analytical methods or oMy, ipers further away, the amounts decreasing quickly with
posite failure computer simulations have established that, i

. - _ . istance. However, his model is too complicated for the
the fiber strength variability is small, the composite fa"”reprobability methods of the present work.

mode will be brittle. They have also gone further to deter- The Weibull distribution[7] is often used to model the

mine the composite strength distribution in this case. Faf,nq0m strengtlX of fibers. For a fiber segment of length,2
fewer works, however, have investigated the regime of large

fiber strength variability through computer simulations, and F(x)= ProgdX=x}=1—exd — (28/Lq)(x/Xy)"], x=0.

itis not at all clear, based on these, whether the brittle mode (5)

will continue to be followed as fiber strength variability in-

creases or a tough-brittle transition will occur. The dilemmaHere p is called the shape parameter axglis the scale

is basically this: If a sizable crack forms in a composite withparameter relative to length,, the gauge length in tension

large fiber strength variability, it is possible that it will grow testing. The study of bundle failure is simplified by assuming

catastrophically by sequentially overloading and failing in-that a break anywhere in asdong fiber segment can be

tact fibers surrounding itself, i.e., fail in a brittle manner. Onrepositioned to its center. Also, <X, (i.e., in the lower

the other hand, it is also possible that considerable dispersddlil), the Weibull distribution is well approximated by the

fiber failure precedes the formation of a sufficiently largepower law distribution

catastrophic crack, so that composite failure actually occurs

as a result of coalescence of dispersed cracks, i.e., failure F(x)%2—5<i)p 6)

follows the tough mode. This is seen in computer simulations LolX) °

where composite size is necessarily limited. While the latter

possibility is unlikely when the fiber strength variability is In what follows, we take (2/Lo)(1/xg)=1 with no loss in

small, we cannot rule it out when the fiber strength variabil-generality; an alternative view-point is thatlenotes the of

ity is large, and it will be seen in this work that the failure Eq. (6) normalized by[Ly/(26)]*x,, and thusF(x)

mode followed depends subtly upon the details of fiber=x”. In view of these assumptions about the load sharing

strength statistics determined by fiber flaw character, andnd fiber strength within each bundle, the question posed

load sharing between intact and broken fibers. earlier can be reworded as follows: In a planar composite
To make these qualitative notions precise, we followbundle obeying LLS, is there a tough-brittle transitiongas

Gucer and Gurlandi2], Roser 3], and Scop and Argo#] in decreases, i.e., as the variance in fiber strength increases?

The problem of determining the composite strength distribu-
tion Hp, , is therefore reduced to determini@,(x), given a
load sharing scheme and strength distribution for individual
fibers.
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The brittle and tough failure modes, qualitatively de- probability of cluster extension. Note that replacing each fac-
scribed above as composite failure by catastrophic crack exer (K;x)” in Eq. (8) by Eq.(9) does not improve the agree-
tension or coalescence of a number of smaller cracks, respegrent. In fact, this correction is excessive and the resulting
tively, were characterized by Harlow and PhoefB{ in  formula greatly underestimates the failure probability.
terms of the bundle strength distribution. By enumerating all The conclusion of Harlow and Phoer{i%] about the ex-
possible sequences of fiber breakage leading up to bund|gtence of a characteristic distribution functiakb(x) was
failure, and adding up their probabilities to fir@h(x) for  proved rigorously by Kuo and Phoeni%2] using a renewal

n=12,...,9,they numerically found that there exists a theory argument fop=3. They also suggested a way to
characteristic distribution functiolV(x) independent o tighten their argument fos>2. This did not guarantee, how-
for p=5, 10, and 15 such that ever, that the probability of failure of a large bundle was

truly represented by a weakest-link arrangemenh dihks
each followingW(x), the stumbling block being the relative
magnitude of error resulting from nondominating eigenval-
ues compared to the dominating one W(x).

To get a sense of the form of the distribution for compos-
' : ite strength for a wide range of possible fiber strength statis-
speed of convergence increases wilfThey also found that €;ics, Harlow[13] further simplified the bundle model above

such a characteristic distribution function does not exist for . . . X
loose bundle of fibers, which fails in a tough manner. Thus,and considered a LLS bundle in which fiber sirengths are

they characterized the brittle failure mode as one in Whicheither Oorl \.N.ith probal:_JiIitieqa and Lp, rgspectively. He
the composite strength distribution admits a weakest liniCt UP @ primitive recursion matrix Wh'Ch gives the p_rgbabll-
scaling, Eq.(7). Conversely, in the tough failure mode, they ity of failure of a (j +1)-fiber bundle given the probability of

showed that this scaling does not hold. Harlow and Phoef_ailure of aj-fiber bundle and using the Perron-Frobenius

nix’s conclusions have since been verified on much IargeEheorem proved the existence of the characteristic distribu-

compositega few thousand fibeyghann=9 using efficient ion function in this case, and the true weakest-link probabil-
recursion algorithms due to Zhang and D{i&j and Wu and

nfe

W,(X)=1-[1-G,(x)]""——— W(x) for x>0. (7)

They found that convergence is rapid: %+ 0.35 for p
=10, |Wy(X) =W, 1(x)|<1071! for n=5, and that the

ity structure in the lower tai(relevant to large bundiggor
Leath[9]. arbitraryp. Duxbury and Leath14] also conducted a similar

recursive, eigenvalue based analysis but obtained a simpler
analytical result for the lower tail ofNV(x). Harlow and
Phoenix[15] treated the same problem using the Chen-Stein
method for the Poisson approximation and obtained an ex-
pression for the composite strength distribution for large
bundles equivalent to that of Duxbury and Leai]. The
advantage of the Chen-Stein approach, used in the present
work, over the Perron-Frobenius approach is that it gives a
closed form expression for both failure probability and a
bound on the error resulting from nondominating eigenval-
ues of the recursion matrix.

Harlow and PhoeniX5] reason thaiV(x) represents the
probability of failure of one ofn weak links in the bundle.
Harlow and Phoenix10] and Smith[11] identify the physi-
cal event corresponding to the failure of a weak link: the
formation of clusters of breaks starting from a single “seed”
fiber break(with probabilityx”), and its growth by failing at
least one of its two neighborgwith probability 1—[1
—(Kjx)”]z, j=1.2,... k=1, which for small K;x)” is ap-
proximately 2K;x)”). In the limit asn—co andp— o with
logn/p—c,0<c<o, Smith proves thaG,(x) will converge

to Phoenix and Beyerleifll6] consider the 0-1 fiber model
G () ~nX[2(K1X)P [ 2(KoX)P - [ 2(K o 1X)?] as above, but |mposed_ a more _dlspersed version of _LLS,
called tapered load sharing, in which the load of a failed fiber
=n2" TKEKS: - -KE_ x"P, (8)  is distributed to the nearest and next nearest neighbors in a

2:1 ratio. In this case too, they found explicit asymptotic
whereK,=1+€/2 andx is the so-calledritical cluster size  expressions forW(x), especially in the lower tail, and
and is the integer that satisfiés, x<1<K,x. Remark- showed rigorously that a composite under 0-1 fiber strength
ably, when compared with empirical distributions from admits a weakest link scaling in terms\&fx), with dimin-
Monte Carlo simulations, it is found that Smith’s formula is ishing relative error as the bundle siméncreases, i.e., un-
accurate forp as small as 3. A possible reason why Smith’sdergoes brittle failure, regardless of the probabifityhat a
formula breaks down for smallgris seen by examining the fiber has 0 strength.
factor 2(K;x)” in Eq. (8). His model assumes that each of  Recently, the statistics of the failure process and ultimate
the two fibers surrounding thecluster is “fresh,” i.e., that  strength in composites have been studied extensively using
neither of them has survived a previous overload. The failurdvlonte Carlo computer simulationge.g., Beyerlein and
probability of a fiber at loadK;x)” conditional on the event Phoenix[17], Landis et al. [18], and Wu and Leatt19]).
that it has survived loa&; _;x is These studies go beyond the simplest planar LLS composite
bundles and are able to model failure of tw@b) and three-
dimensional (3D) composites incorporating more compli-
cated but realistic load sharing schemes based on a true mi-
cromechanical analysis. Load concentration still occurs on
which, while close to K;x)” for largep, is much smaller for fibers next to clusters of broken fibers, but the load eventu-
small p. In this respect, Smith’s formula overestimates theally grows as the square root of cluster size, with more dis-

(Kjx)P=(Kj-1x)?
1-(K )P

9
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tant fibers taking up the remainder. These simulations ar@écorrect even for large and point out why this may not be
limited, however, to modest bundle or composite sizes due tapparent within the probabilistic range of the simulations. By
rapidly increasing failure sequence sizes and pattern con@riving at the correct scaling of the number of fibers suscep-
plexity, and in the case of large variance in fiber strength thidible to failure ahead of a cluster of breaks in Eg0), we

can lead to egregious uncertainties in the results, as reveal®dll also show how these heuristic formulas can be amended

by the following example. to make them applicable to gi>0.

Assuming Hedgepeth and Van Dyk&0] load sharing,
and Weibull fibers in a 3D bundle with hexagonally arrayed !l BUNDLES WITH DISCRETE FIBER STRENGTH
fibers, Mahestet al. [[21], Fig. 13| find that a weakest-link A. Notation

scaling, Eq.(7), exists down tgp=1 for bundles with more .

than 225 fibers and that the characteristic distribution func-. L€t I={12,...n} be an index set used to number the
tion W(x) can be captured reasonably well with a Smith-like fiP€rs in a bundle and le#( :i € 1) be i.i.d. random variables
model based on Eq8). Using the same empirical distribu- distributed according to Pré#; =0} = Bo=a,ProfZ;=1}
tion data, however, they also obtain agreement with the two=/81,ProZi=2}=8,, ... ProffZj=r}=p8, where «
scale model of fracture due to Curfi#2,23. In his view the T B1t B+ +B=1, andB;>0 for j=0,1, ...y, which
composite fails in a brittle matter with the failure of any will be used in constructing discrete fiber strengths. Since we
subsystenigroup of a certain number of fiberdut the fail- ~ repeatedly discuss the eveuf_{Z;=j}, wherep andq are
ure of the subsystem itself falls in the tough failure regimeintegers with Gsq<p<r, in what follows, it will be helpful
[[21], Fig. 18]. To determine which of these possibilities is 10 introduce a shorthand notation for it. We will henceforth
true as composite size increagasd only one, if either, can take {Ziepg} to be synonymous with{Z {q,q

be trud, would require knowledge of the lower tail of the +1,...p}}. Then ProbZ;=p,}=3p_,B;. For example, if
bundle strength distribution. Such is not presently obtainablave specify {Z;=3,}, it implies the event{Z;=1}U{Z,
due to computational and algorithmic limitations. Analytical =2}U{Z;=3}. Also, let us define

results are therefore essential in putting approximate analy-

ses and interpretations from Monte Carlo simulations on yi= @ (10
firmer ground. V' at Bt B

We must mention here the extensive work on the closely .
related problem of composite lifetime in which fibers have©" =12, ...y andy=1. , _
random lifetimes depending on their load histori€urtin Consider ann-fiber LLS bundle whose fibers are in-
and Schef24-26, Newman and Phoenif27]). A brittle- dexed by the set Let the strengtts; of its ith fiber becrzi
tough transition does occur in this casepat1. Also, owing  Where O0<oy<o;<0,<:-<o, are arbitrary but fixed real
to their similarity to mechanical fracture, we mention studiesnumbers. Let this bundle be subjected to a far-field tensile
of conduction breakdown in random fuse networks and eleload nx in the fiber direction(we take the fiber cross-
ment breakdown in elastic spring networks. A review ofSectional area as unjtgo that the normalized stress per fiber
these works and their relationship to the present model of X. If x<o or o,=<X, all the fibers and hence the bundle,
composite fracture can be found in Phoenix and Beyerleirsurvive or fail, respectively, with probability 1. If, however,
[16]. ogo=x<o,, the applied stress initially causes partial fail-

In this work we develop bounds oB,(x) for a planar, ure of the bundle by breaking those fibers whose strengths
n-fiber LLS bundle for allp both from above and below. Our are smaller tham. We assume that failure of individual fibers
approach will be as follows: We first consider a compositeoverloads their neighbors according to the idealized local
whose fibers can take on onercn distinct strength values load sharing model described in Sec. 1. Some of the over-
following a prescribedliscrete distribution Section 1l A de-  loaded fibers may fail and produce even greater overloads on
scribes this composite. Sections 1| B—II E are devoted to esthe remaining intact fibers. This process of fiber breaking
timating the strength distribution of such a composite to-followed by intact fiber overloading may eventually lead to
gether with error bounds on the estimate using induction, anthilure of all the fibers in the bundle, i.e., catastrophic bundle
the Chen-Stein theorem of extreme value statistics. With thi§ailure. We wish to calculate the probability of this event.
result for the discrete strength case in hand, we then proceed Next we define non-negative integers(; €7, :]
to bound the strength of a composite whose fibers are dis=0,1,...r) such that [1+({;—1)/2]x<oj<[1
tributed according to a continuous power law, which guidest (€;/2)]x if o;=x and ¢;=0 if o;<x. That is, {; is the
the choice of discrete probabilities and associated strengtsmallest number of broken neighbors that must surround an
values. These bounds are obtained in Sec. Il by sandwichinigtact fiber of strengtho; in order to overload it to failure
the continuous power law distribution between two discreteunder applied loac. We may assumé <€,<{,<---<{,
strength distributions and applying the result of Sec. Il E.for, if {;=¢;,, for somej €{0,1,2 ... r—1}, then fibers of
The main results are in Sec. IV, where we compare thetrengtho; and o, are indistinguishable in terms of their
present bounds with predicted forms of the bundle strengtifailure behavior at fixed appliedand we may eliminate one,
distribution of previous heuristic models in the literature,say ¢;,,, from consideration and set Pidh=j}=p;
thought to be validbased on comparison with Monte Carlo + ;. ;.
generated strength distributiorfer p>1 but not for smaller Let X, denote the smallest applied tensile strassat
p. We will show that these heuristic distributions are slightly which the bundle failsX,, is then called the bundle strength.
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Bundle of n fibers smaller  asymptotically as €,0(€,—€¢)0--0(€,
=€) U(n—€;)— .

é [0'1‘2""4 o [0‘1'2 [0‘1 J J J % B. Strength of a 0-1 sub-bundle

FIG. 2. The dominant failure event inGa1-2----r sub-bundle Letl 1={p,p+1,_. PN = 1}Cl,p§n— nl—_i_ 1, _be the
schematically showing the successively nested failing sub-bundidfidex set of am;-fiber sub-bundle starting at fiberin the
0-1,0-1-2,...,0-1-2----(r—1). The view shown is a part of tne N-fiber bundle such thaf;=1, foriel,, i.e., all the fibers
cross section of an-fiber bundle. within the sub-bundle indexed by have strength either,

oro,. LetZ;,ielq, be distributed as stated in Sec. Il A so

that the probability of occurrence of a sub-bundle consisting
We seek its distribution functio,(x)=ProX,<x} for  entirely of fibers withZ;=1, is (a+3,)™ for any p. Let
x=0. The analysis is readily extended to a chaimdtatis- N;1=¢;. We also define two imaginary fibers at positigns
tically independent such bundles each consisting fibers. —1 andp—2 such thatZ, =7, ,=1. Observe that the
Letting the strength of the chain be that of its weakestsub-bundle indexed bl fails if and only if the sub-bundle
bundle, and denoted a%,,,, its distribution function is indexed byl;U{p—2,p—1} fails, so that their probabilities
readily obtained onceG,(x) is known, and isH,,,(x)  of occurrence are equal. As will be seen shortly, these imagi-
=Pro{ X n<x}=1-[1-G,(x)]™ for x=0 due to the se- nary left boundary fibers simplify the consideration of failure
rial nature of the assemblage. configurations close to the boundary while leaving the prob-

For the purpose of an overview of the analysis to followability of failure of the sub-bundle unchanged.
in subsequent sections, we give here a short sketch of the We now approximate the probability of failure of this sub-
arguments made. In what follows sab-bundlewill refer to  bundle, called a 0-1 sub-bundle, using the Chen-Stein
some collection of contiguous fibers of tinefiber bundle. method. We begin by defining events associated with fiber
We begin in Sec. Il B by evaluating the probability of failure i € |;U{p—2,p—1} that produceY;=1 whereY; is the de-
of a sub-bundle within which its fibers are restricted to havependent Bernoulli process defined in Appendix A. Following
strengthso, and o; (to be called a 0-1 sub-bundleThe  Harlow and Phoenix15] we define the event;=1,iel,, if
approach follows that of Harlow and Phoeiit5] although ~ Zi=1.Z;1 ¢, +1=0ji+€;+1el;, and there is exactly one 1
we pay more attention here to the effects of the two subamongz;,,,Z;,, ... ’Zi+f1' Otherwise we seY;=0.
bundle boundaries. Then in Sec. IlC we consider all the ¢ js convenient to express this definition pictorially as
possible ways in which a sub-bundle whose fibers are al-
lowed strengthso, o4, and o, (denoted a 0-1-2 sub-

bundle can fail. By evaluating the probability of each of 1 1

thesefailure configurationsve show that two of the configu- (12)
rations asymptotically dominate the rest in the magnitudes of 1.0 o 0,10 o 0

their probabilities of occurrence. These two dominant 0-1-2 0<s<ty l—s

configurations contain a 0-1 sub-bundle in them; to evaluate

the failure probability of the 0-1-2 sub-bundle one thereforeand henceforth we refer to such depicted occurrence of
needs the probability of failure of a 0-1 sub-bundle evaluated=1 as failure configurations in the sub-bundle indexed by

in Sec. Il B. Continuing this process inductively to a 0-1-2-3since if they occur the sub-bundle fails. Observe that we
sub-bundle, we have in that case another set of failure corirave not shown the;—(€,+2) 1, fibers surrounding this
figurations, all but two of whose probabilities turn out to be configuration in the sub-bundle. On this configuration, we
asymptotically negligible. These two failure configurationshave marked fiber and have also labeled thpgessurecele-
similarly involve a 0-1-2 sub-bundle. As depicted schemati-ment with a|. This pressured fiber is surrounded by at least
cally in Fig. 2 we will find that the two asymptotically domi- ¢, broken fibers so that it will fail. Note that the failure of
nant failure events of &-1-2----r sub-bundle consist of the pressured fiber results in catastrophic failure of the 0-1
successively nested failing sub-bundles of lower order. Theisub-bundle since it implies that all other 1's in it will be
probabilities of occurrencey,(n) as given in Eq(55), con-  overloaded as well.

stitute our first main result for the strength distribution of a  Following the Chen-Stein methodee Appendix A we
0-1-2----r bundle. The error bounds op,(n) become first evaluate ProfY;=1} as

a1y a+ B)Mm 4, if i=p—2,

€ Bra’(a+ By)" D if j=p—1,

1 B2a (a+ By~ 1t if p<i<p+n,—£,—1,
0, if i=p+n,—¢€,—1,

E[Y;]=ProdY;=1}= (12
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whereY,_,=1 if the event Then from Eq.(A3) we approximately have Pr{b=0}
~exp(—\;) with an error b;+b,+b; whose magnitude
p—2p-—1 we presently bound. We first choode={j:|j —i|<¢€,+1}
to be the neighborhood of dependence of fibdrthis choice
l for J; givesb;=0 because thel; and{Y;:j ¢ J;} are inde-
1 1 0 --- 0 (13) pendent as there are no common fibers involved between
N e’ them. SinceV; depends only oqY;:j&Ji}, Y; andV; are
& independent and therefot®;=0. Also from Eq.(A3) we
occurs[i.e., a special case of E¢L1)] andY,_,=1 if the  have forb,
event of Eq.(11) occurs withi=p—1. Also fori=p+n;
— ¢, configurations of the form Eq11) cannot occur since
they necessarily specif§,+1 fibers, which cannot be ac-
commodated to the right of the starting fiber of the configu-  by=<min(1,1A1)2(n;—€1)(€1+1)[N1/(ny—€1)]?
ration. Observe also that our special assignmeys, )
=Z,_1=1 enable us to treat the special configurations asso- A1(Nng)
ciated with the left boundary as also being configurations of (ni—¢€y)°
the form Eq.(11).
If we set)\1=E[T]=Eip=+;1_1Prot{Yi= 1}, we obtain

Here we have multiplied by only the factog— ¢, because

A(ny)=(n—€1)(€1a"182) (a+ By)"~ (T2 pip;=0, when eithei >n;— ¢, or j>n;—¢,—1, or both.
Boundingb, in Eg. (A3) requires finding pairs of failure
x{1+0 )} (14) configurations such that;Y;=1 for j ?Ji . For O=s<¢,,
ni—4€; we haveY;Y;=1 only for a configuration of the form

— e S,
—

0<s<ty l—~s 0<t<s

=4

. - , (16)
Y,

and for fixed s, this has probability sg3a‘t"S(a  so thatb, is N;O(1/¢;) as\;]0. For small\;, exp(—\y)
+ By)" ((t5+3) g0 that ~1—\; SO we may write the probability of failure of our 0-1

P P sub-bundlew4(n;), including the Chen-Stein error bound as
1~ 1

> EYYiieiil< Y s a1t S(a+ By)M (1St
- o wi(n)=(n;—€,) (€118 (a+ By (172
1 N 1

€ n—

o0

< 33,01 ni—(€,+3) S
<spja'(a+B1) SZO Sy1 «{1+0

}. (19
=Bt a+ M 172 7

wheni<p+n;—¢;—1 and is 0 otherwise. Also, whenh Anticipating the pattern that will emerge from the 0-1-2 and
=p—2 ori=p—1, the probability of those configurations is 0-1-2-3 calculations in Secs. IIC and IID we rewrite this as

N1O(/(n—¢€4)). Therefore,

by<min(1,1A)(ny—€1) Bra‘r* H(a+ gy~ a*+2) pa(ny)=(ny—€1)Colya‘y(a+py)" 1
— min(L 10 ) 22 18 1oof 2y 1 20
=min(LIh) 7 (18 8 e PR 20
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where 7
oo B2 . , 2.0 --- 0,20 --- 0, (21
latppz M) 0<s<ty tozs
C. Strength of a 0-1-2 sub-bundle and
The next step toward an approximate formula for the
probability of failure of a generad-1-2----r sub-bundle, )
for r=2, is the evaluation of the failure probability of a 0-1-2
sub-bundle, i.e., one whose fibers h&e 2. 2 0 o 0,20 L 0. (22
We let I,={p,p+1,...p+n,—1}Cl index a sub- 01 <s<ty ly—s

bundle for somegp<n—n,+1 such thatz,=2, for iel,.
Let Z; be distributed as stated in Sec. Il A. As in the case ofj, scanning the 0-1-2 sub-bundle from left to right, if either

the 0-1 sub-bundle, s&, ,=Z,_, =2 forfictitious fibers at ot these configurations is found we S&t=1 and consider
positionsp—2 andp—1 to simplify the consideration of he sub-bundle failed.

boundary effects. Then the sub-bundle indexed bfails if In addition to these direct extensions, there are configura-
and only if the sub-bundle indexed byU{p—2,p—1} fails.  tions in which a pressured fiber with=2 is overloaded to
Also letny= (5. failure by the earlier failure of a nearby 0-1 sub-bundle. In

Our procedure for approximating the failure probability of these configurations, we denote
this sub-bundle is similar to that of the 0-1 sub-bundle,
though it is more complicated due to the much larger number
of possible failure configurations. We begin by defining fail- lo --- 1o (0-1) 1 --- 1
ure configurations in the 0-1-2 sub-bundle in Sec. IIC 1 and S N d

in Sec. IIC 2 we evaluate their probabilities. Appendix C is b
concerned with bounding the Poisson approximation error
b, +by+bs. to be a failing 0-1 sub-bundle witli,—s fibers andL is
_ _ _ taken as a positive integer such that €¢,0¢,—(€,+1).
1. Failure configurations Also, (0-1) denotes the 0-1 failure configuration, Eg2). (It
The simplest failure configurations of the 0-1-2 sub-turns out later that optimallyL = —log, {min[€;,{,— (¢,
bundle are direct extensions of EdJd), +1)]}.) Some configurations to consider are therefore
|
i
2, 0 -+ 0 219 --- 10 (0-1) 14 ---
Te— 0 <0v> ) (239
0SS<L 22_5
1
2 0 --- 0 210 - -+ 1n (0-
1 , i 0 <0v1> 10 19’ (24)
L<s<biA(lp—(81+1)) fy—s
1 !
2.0 -« 0 215 ---1(0-1}1p --- 1
—_— o v> 9 2, (25)
£ <s<la—(61+1) lo~s
1
21, 0 -+~ 0, 21p---1(0-1)1 - 1,20 --- 0 (26)
Nt pr— [\ - N !
0<t<s Z;:s 1<s<L
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i !
£y—s L<s<la—(01+1)
i !
€1+2Ss<}rz—(€1+l) l;s

where, in this last configuration, failure of the 0-1-2 sub-bundle occurs by failing a pressured 2 fiber, which requires the failure
of two 0-1 sub-bundles, one on each side.

Failure configurations of a 0-1-2 sub-bundle need notla® fiber at the pressured position. The following are valid failure
configurations, which are not counted by the failure configurations listed thus far. In these cases, we take the 0-1 sub-bundle’s
failure configuration as the pressured element, and thus can have

i l
0O --- 0 2 \10...104 \(0_1) lo --- 10, 29
G-ti—s—1  Oy(ty—20,)<s<lo—(£1+2) A
|
and First, we claim that the above collection of failure configu-
. rations is exhaustive in that a failing sub-bundleZpf 2,
v ! i el,, fibers must contain at least one of the configurations
2 1y ---1 (0-1) listed above. Second, not all the above listed configurations
o (B0 are possible for arbitrar§; and€,. If, for instance¢,> ¢,
L—(01+2)<s<bz  £,+2 —(€4+1), the configurations Eq25) and Eq.(28) are im-

possible. Third, notice that in configurations E26) and Eq.
(29) we specify certain fibers to the left of fiberwhereas in
the other configurations we do not. This is done to reduce

and, indeed, a sufficiently long failing 0-1 sub-bundle can
double as a failing 0-1-2 sub-bundle, namely,

i ! overlap between configurations so that the dominating part
of the Poisson approximation errd;, can be kept small in
lp -+ 1o (0-1) . (31)  comparison to the probability of bundle failure. For instance,
N e’ e e

without fibers to the left of fiber in Eq. (26), we have the
configuration 23 ---1,20--- 0 which may overlap Eq.
A few remarks about these configurations are in order(23) as

& 042

1
20,0 - 0215 16{0-1)1p---1p 1p--- 120 --- O
%,—/ ~ N\ - > - ~ o’
0<s1<L PR lo—s5g+81 1<so<L
|
and this results irb, being of the order of the probability 2. Failure probability

being estimated. Using the methods of the next section, the The propability of occurrence of any of the various failure
probability of this event may be seen to be of order compaggnfigurations listed in Sec. I1C 1 depends ical,. Since

rable to the probability of occurrence of either E@3) or  each configuration specifies at ledst+ 2 fibers to the right
Eq. (26), which dominate the probability being estimated. of fiperi,

Since a tight error bound is desired, this situation is to be
avoided. Y,=0 fori=p+n,—4€,—1,
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that is, by definition the sub-bundle cannot be failed.that their probability of occurrence is of higher order
Thus we letL<i<p+n,—{,—1, and evaluate the probabil- than that of all other failure configurations listed in
ity of occurrence of configurations E§23) and Eq.(26). Sec. [IC1.

We show that these are the dominant failure configurations in From the configuration Eq23) and Eq.(20) we have

L-1

Prof{Eq. (23)} = (B1+ B2) Bal @+ 1+ )" (242 520 aSuq(€,—S)

_ _ (a+B)(B1+B2) B2
Bila+pi+ By M

wherey; is defined in Eq(10). Also, for the configuration Eq26) we have
L-1s-1

ProEq. (26)} = (,31"‘,32),35521 tZO a i (€= ) (a+ By + By "2 2H 13

(€2)(a+ Br+ Bo)"2 2{1+0(¥))}, (32

ﬁza(a+ﬁ1)(ﬁl+ B2)
= Bu(a+ ot B2 (at By (But Bo+ oy Ml

Adding the disjoint probabilities Eq32) and Eq.(33) we obtain

Bao(a+ B1)(2a+ B1)(B1+ B2)?
Bi(a+B1+ B (a+B1)(B1+ B2)+ aPy

o) (@t B+ Bo)" {1+ 0(¥))}. (33

ProEq. (23) UEQ. (26)}=

}ul<€z><a+ﬁl+ﬂz>”2‘62{1towb}. (34)

It is shown in Eq(B7) of Appendix B that the sum of the ChoosingL =[— log, [€1A(€2—€1)]], we can make the error

failure prObabIlIty contributions of failure events besides Eq term close to its smallest value with respect to Varmw
(23) and Eq.(26), listed in Sec. Il C 1, is of diminished order that

P Eqg. (23)UEQ. (26
"oH{Eq. (239 UEq. (26} Na(Ny) = (M= €5) Copua(£o)(a+ Byt By 2

€,{(£,—2¢,)00}°
XO| yit+——— . (39 01(0,—26)00)%
2 "1 X11+0 - Y1
Furthermore, it is shown there that the probability contribu- 2t
tion of the boundary configurations with<i<p+L is of [—log, [€10(€2—€1)]]
diminished order + =1, (39

As in the 0-1 case, we still need to compute the Chen-
Stein error termb;+b,+b4 arising from the Poisson ap-
where C<L=<¢,. In the asymptotic analysis, the paraméter proximation of the dependent, bundle failure event process

L
ProdEg. (23)UEQ. (26)}O(m) , (36)

will be given special properties below. Y;. We show in Appendix C that this error is of order
Setting)\zzE[T]zZip:;TlProt{Yizl}, we have from )\ZO(y'i) and therefore is smaller in order than the error
Eq. (34), Eqg. (35), and Eq.(36) that generated by omitting all but the two most dominant con-
. figurations and boundary configuration terms.
N2(Nz)=(Na—€2)Ciug(€2)(@+ Br+ B2)"2 2 Thus, the probability of failure of a 0-1-2 sub-bundle,
ol e 1L, 20,) 0013 . zraocrcSOLiJQtlng for both boundary and Poisson approximation er-
= Y1 0,— €, V1
L )] p2(Nz)=(Np=€2)Capui(€r)(a+ B+ By) "2 2
+ (37
na—4; 0{(€,—2¢)00}° , 1 1
X11x0 vttt
where 62_€1 61 62_61
o =yt -y +f—'°971[€1ﬂ<€z—€1>ﬂ)] @9
A A I S ny—+¢;
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where 20 -+ 20 (0-1-2) 29 - -+ 29
_ Ba(at B1)(2a+ B1)(B1+ B2)? t3=s
1= 2
Bulat Bt Bo){(at Bu)(Brt B2) + afi} Configuration Eq23) then generalizes to

:(’}’1_72)(1""}’1)(1_7’2)2 ; |

Y1(1=y)(1=y172)
3.0 --- 0 3?0---20(0-1-2)20---2Q

D. Strength of a 0-1-2-3 sub-bundle 0<s<L faes

Extending the previous setup to 0-1-2-3 sub-bundles, w@&"d
let I;={p—2,p—1,p,p+1,..., p+n3z—1}CIl for somep
<n-nz+1 such thaZ;=3, foriel;. LetZ; be distributed

as described in Sec. Il Aexceptthaf ,=Z, 1=2;. Also 3, 0 --- 0 31y ---1p (0-1) 1o -+ 1
_~ e >
let ng=¢5. 0<s<L e
Let L be as defined in Sec. IIC1 and let us denote & - t3—s
failing 0-1-2 sub-bundl¢ ;— s fibers long by and configuration Eq(26) generalizes to
i i
31,0 -+ 0,32 ---20(0-1-2)29 --- 203 .0 --- 0
N e’ /A
0<t<s laes 1<s<L
and
1
31,0 -« 0, 31 1p {(0-1) 1o 1,3 .0 --- 0
N e N e’
0<t<s taes 1<s<L

The probabilities for these evengswe do not write explicit error bounds hgrsum to

L-1

ProEq. (40)} =(B1+ B2+ B3) Ba(a+ /314'/32“‘/33)“37({3”);0 a®uy(€3—9)

+ B+ + Byt
_ (a+ B+ Br)(B1+ B2 Bs)ﬁsM2(€3)(a+ﬁl+ﬁ2+ﬁ3)n37€31

© (Bt Ba)(at Bit Byt Ba)?
and
L—-1
ProbEq. (41)}:(,31"‘32+,83),33(a+ﬁ1+,32)”3*(€3+2>520 aSuq(€3—3)
(a+B1)(B1+ B2+ B3)
B 21<Bozl+§i+§§+§:>f “ua(ls)(at Bo+ Byt 3)"™ .
Since
R R
wo€z) | (€a—€2)(£y—€1) \ a+ Bi+ By i L e e | by :

the probability given by Eq44) dominates that given by E¢45). Next we find that

L-1s-1
Prot{Eq. (42} =(B1+ B2t B2 B3 2, 2y o ta(lo=s)(at Byt ot Ba)s (o730

_ Bia(Bi+ Byt By)(at Bit Br) )
(Bit B (a+t Bt Ba) (Bt Bat Ba) T Byt Bo)) M2 73

(a+ i+ Byt By)"3 312
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and

{—1s-1
Prof Eq. (43)}:(/31+,32+/33),3§S§::1 2:0 a g (€3—S)(a+ Byt Bat Ba)"3™ (3734

__BaBtpatBo)atBy)
B(a+B)(Bit Bt Ba)+aBy}

3)(a+ Byt Bat Ba)"3 (272, (47)

Equation(47) can be seen to be of smaller order of magnitude thar(4®), exactly as Eq(44) is seen to dominate E¢45).
Also, adding the probabilities in E¢44) and Eq.(46) gives

Bolart Byt Ba) (2a+ Byt o) (But Bt o)
PrOHER. (400 VB, (42} (5 e B B s Bt BT B+ Bl 2 (90 B Bt o) (472,
a8

We must also consider configurations of the form
)
32 -+ 20(0-1-2) 2 - 282 - 20 (0-1-2) 2 - 2 (49)

——

£42<s<l3—(£2+1) £3-s

which have probability

l3—(€r+2)
ProbEq. (49)}= 33 2+2 pa(S) o £3—9)

s=1tp

€1(€,— €){(£3—205)00}° y€1< V2
1

€3~ ¢, 7

&2
). (50)
Y1

=Prob{Eq. (40) UEQ. (42)}0(

In a manner similar to the 0-1-2 case, we can show that all other failure configurations of a 0-1-2-3 bundle are dominated
by the configurations described by E40) and Eq.(42). Accounting for the discrepancy in the probability of E42) when
p<i<p+L exactly as in the 0-1-2 bundle, f(z\rng[T]=2ip::3_lProt{Yi= 1} we finally have the result

i 1 1 L L 0.{(€,—2¢,)00}°
N3(ng)=(ng—€3)[Coma(€3)](a+ By+ Bt B3)" 31 10 €_1+ €2_€1+ €3—€2+ na— (s R Y1
€1(0,—€){(£3—20,)001° 72)62)
+ 63_62 Y1 Z (51)
where
Ba(a+ B+ B2)(2a+ By+ B2)(B1+ Ba+ B3)? (y2— ¥3) (14 y2)(1—y3)?

Co

:(,81+,82)(a+[31+,82+ B3)*{(a+ B+ B2)(B1+ Ba+ Ba) + a( B+ ,32)}: Y2(1=y2) (1= v2v3)

The Poisson approximation error can be bounded exactly as in the 0-1-2 case. It turns out to be of the order of the error term
in Eg. (51) and, including that as well, we can tak&(n3) =\3(n3) as the probability of failure of the 0-1-2-3 sub-bundle.

E. Strength of a0-1-2~---r sub-bundle

The above steps generalize from0al-2----(j—1) sub-bundle to &@-1-2----j sub-bundle and can be carried out
indefinitely. For theD-1-2----j,j=2 sub-bundle, which is; fibers long, the dominant failure configurations are
i i
nQO - 0,50 -1o - (=1 (0-1-2--(g=1) g=1o - (=1 &2
0<s<L A
and =8
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';(J— 1)) (7)=1)o -+ (1=1)o

0<t<s

and evaluating their probabilities as before, we have
i) = (= €)ICj_1ptj1(€))](at Byt---+ B"~ i
{ ([‘lOleWlD(gz_ﬁ)ﬂ
xX)1=0

nj—€j
N C1(€p—€ ) (€51~ €;_){(€¢;—2¢;_,)00}°
6=,

£;-s

(53

This is the relation between the probability of failure of a
0-1-2----j and a 0-1-2---j—1 bundle and it brings out
the hierarchical nature of the failure process.

Explicitly, at the largest scale, by substituting far, j
=1,2,...r—1, and takingn, to ben (i.e., for a given load
the next largest bundle in the hierarchy is the full buineie
obtain

o 2 P Yi-1 fj-1 He(N)=CoCiCyo -Cr 1 €1 (€= € 1) (3= L) (€, =€, —1)
1
SR » e
Y1 Yj-2 X(n—£)a"(a+ By)2 "1 (at+ By
where e Bl (1+g), (55
c :(Yj—1_7j)(1+71—1)(1_71')2
Ty (=)A= yyi-0) where
|
j
[_|0971[€15(€2_€1)]1 r r71_=[2 {(em—l_€m—2)(7m—1/7m—2)€m71}{(€j_2€j—1)|:|0}3
£=0 O (56)

(n_er)D[DE=l(€j_€j,1)] +j 2

where terms involving,,p<0, have been dropped. We
have also used the identity+ 8,+---+8,=1. The error
term is greatly simplified i;<2¢; _, since the second term
in Eqg. (56) vanishes. Also note that

,Hl Cio1=(1—y)(1—y,)

Yi-1— 7)1+ y-0(1=v))
Yi-1(1=vvi-1)

xj];[( . (57

2

We have shown so far that the probability of failure of a

bundle in the composite with discretely distributed fiber
strengths is given by E@55), and the dominant failure mode
of this bundle, when the;’s and{;’s are such that the error

j
terme in Eq. (56) is small, is that failure is initiated by the

€j_€j*l

very similar to Smith’s dominant failure mode valid only for
large p which underlies Eq(8); the “fiber adjacent to a fiber
break” in Smith’s argument corresponds to a “sub-bundle
encompassing a failed sub-bundle” in the present calcula-
tion. We note, however, that this structure is unlike that of
Newmanet al.s [28] hierarchical bundle model. We next use
Eqg. (55 to bound the failure probability of a large bundle
whose fiber strengths are continuously distributed according
to the power distributiorF (x) = x?,0<x<1, and will notice
further similarities there between Smith's formula and the
present formula.

[Il. BUNDLES WITH CONTINUOUSLY DISTRIBUTED
FIBER STRENGTH

We now use Eq(55) to estimate the strength distribution

failure of a 0-1 sub-bundle, which causes the failure of aG,(x) of an n-fiber bundle under local load sharing and

0-1-2 sub-bundle, and so offrig. 2) until a 0-1-2----r
sub-bundle fails. The dominant failure modeducecdhere is

whose fiber strengths are distributed according to the power
law
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F(X):Xp1[0<x<1]+ 1[x>1] i (58) p= 151 c= 2’ k=3
1 T T T
wherep is the shape parameter of the distribution. To do so,
we must discretizé=(x). For simplicity, we restrict the ap- 43 o8}
plied load per fiber to take on one of the discrete values % B B
LT:T 2 Pa
1 1 o 06F F(x) .
Xy=o— = ——, k=0,12..., (59) & Fa(zy~
Ko 1+(k°c/2) lﬁf sl |

wherec is an arbitrary integer chosen sufficiently large, as 3 _
described below(Recall from Sec. Il A thaK, denotes the & o2} B B, <— Fs(=)
load concentration on a fiber adjacentétdiber breaks, and a
specifically thatk ,= 1+ €/2 according to the assumption of 0 .5------.[—31 S, S . .
idealized local load sharingAccording to Eq.(59), then,x, 0 02 0.4 z 06 08 1

refers to the smallest load which causes catastrophic bundle
failure if k’c breaks occur adjacent to some survivor. In  FIG. 3. An example of bounding a continuous power law distri-

other words k?c is the critical cluster size for loag, [se€  pytion F(x) by discreteF(x) and F(x). The continuous power
text below EQ.(8)]. X1,Xz,X3, ... Xk, ... form a decreas- |aw hasp=1.5, and the discretization usés=3 andc=2. This

ing sequence of possible applied loads per fiber with limitgives the lowest discrete fiber strength and bundle load per fiber
zero. We will be interested in the asymptotic behavior ofvalue asx,=x3;=0.1, which is whereF3(x) makes its first jump.
G,(x) whenx=x, andk becomes large. For the time being, Note thatk?c=18 is the critical cluster size for loax),.

however, all the calculations up to the end of this section will

treatk andx, as fixed, where we keep in mind thetic isa ~ ={s;,S,, . . . ,S,} of i.i.d. fiber strengths drawn frofi(x) to
“critical cluster size” associated with bundle loads froqp  form a bundle, we can construabg={s;,S;, . .. ,Sn},
up toX,_;. where
Given k and F(x), we consider bounding distributions 5 )
F.(x) andF(x) defined as P N L
F(X) K(X) s=1+ 5|2 X 1|, i=12,...n, (64)
Fi(X)=F(Kyx)1 < +1 (60)
“ VAKX TR to represent an i.i.d. realization drawn frofy. Figure 3
and depicts thes;—s; transformation given in Eq64). We see
that every bundle realizatiomg is weaker than its corre-
= spondingwg, since, for each, the fiber strengtls; in wg is
Fr(X)=F(KyX) ik xemx<ic 0 T 1pe1p (61) at least as strong as the correspondin@ wg. Hence, the

_ 5 " ) failure probability of the set of alwg’'s, Gn(x), must be
whereu=(j—1)°c, andv=j°c andj=12,...k are cho-  smaller for every than the correspondir@,(x). By a simi-
sen to satisfy the inequalities arourd Thus, for allx we lar argument, it can also be shown t@(x)>G (x)

1 == n .

have For the discrete fiber distribution functidph.(x) and for

_ fixed k we have the probability masses
Er(X)<F(X)<Fy(X). (62

a=x{,

Figure 3 illustrates the power law distribution function for

p=1.5 together with the bounding distribution functions Bj=(Kjzex)?— (K(j1)2e%)?,  j=1,...k, (65

based orc=2 andk=3. Thus there are three main “steps” B

in each bounding distribution, associated wijts0,1,2,3, for the k possible discrete fiber strengths. Similarly, corre-

and the lowest nonzero discrete fiber strength and discretaeponding toF (x), we have
bundle load per fiber value #;=0.1. '

We let G,(X), gn(x), andG,(x) be the bundle strength a=(Kx)?,
distribu_tions corresponding to fiber strength distributions -
F(x), F(x), and Fy(x), respectively. Given Eq(62), it Bj=(K(j+12cXi)” — (KjeeXi)?,  j=1,... k—1. (66)

turns out that
Also, we have the critical fiber failure sequence lengths
G (X)<Gn(X)<Gy(X). 63) =cj? j=1,2,...k, corresponding tc,, and ¢;=cj?]
=1,... k=1, corresponding té,, and these actually de-
This can be seen by investigating realizations of fibetermine thea and g probabilities and discrete strengths in
strength to construct a bundle and noting the monotonicthe bounding distributiong, andF.
nondecreasing nature of stress concentrations on survi- This choice forf; maximizesu,(n) =Gy(Xy); i.e., of all
ving fibers as fibers fail. For any realizationwg possiblem in the power form¢;=cj™, the choicem=2
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satisfiesdlog w /a¢;=0 most closely, foj =1, ... k. Simi- K k=1 , (2K)!
larly, ¢;=cj?,j=1,... k—1, minimizesG,(x,). Thus, the J.Hl (€;=€j-1) H {e(i+1)"—cj}= ( ) Kl
choice of¢; is such thatG,(x,) andG(x,) are nearly the (72
tightest possible bounds dBn(ik). With this choice oft;, Finally, the third product in Eq(S5) becomes
we also see for botk,(x) andF,(x) that the error term Eq.
(56) is O(1/c). k-1
We now apply Eq.(55) to compute the probability of HO
failure of a0-1-2----k bundleG,(x,) whose fiber strengths =
are distributed according tB,(x) and the applied bundle -
load per fiber isx,. Observe that in this case =xp° H (

c
1+ 10,

2 Xk

]pC(ZjJrl)

pC(2j+1)

1+ 7

ch(2j+l) 2
T e

=Kz, (67) (k1)?

pc

2
~(k%e)?r(2[c)r° exp( - X_p)
so the first product in Eq55) becomes «
Upon applying Stirling’s formulak! ~\27e *k** %% and
( 1 ) ( 1 ) making the substitutiok®c/2~1/x, for largek, we have
1- 1-—

j=1 K{ K? k-1 c\ ) ee@i+n
) I1 { 1+J7 J
] (Ko IKD A IKE (A1) i=0
X
j=2 (IKP_ ) (1= 1KF_ 1K) B 477)”( Ze)ZP(cxk>Pc’2
e/ \lex) 20
‘ Ki—1)] c(j-1)2+2|" ‘
ot 1A E e Bl | A o 29 2
= ) = . xexpg — ——2pc\/—|. (74)
Xy CXy

(68 Multiplying Eg. (70), Eq.(72), and Eq.(74), we have for the
lower boundG,(xy)

-5

J

To further simplify Eq.(68) we note that Xk)<p/z><c4)+1/4

G50 =)= (- 269 )| S
1\20 (2plj for j>[3p], 5
1_<1_j_) “lexp—e ) for j<[3p], (69) ><exp(—5x—p), (75)

k

where we have picked the transition point from one form towhere
the other by comparing the numerical values of each form on

the right side with the form on the left side. Then 4\ PCe?r
N(C,p)=P(p)| —| = (76)
CRRNG
‘ ‘ 1)2 (2 p)k
H1 ijﬁHl 1—(1—1-—) }~‘P( )—7— (70 and
i= i=
In(4pc) Xk
where B=1+|2c— VE' (77)
[3p] —2plj A similar calculation may be carried out for the upper
exp—e ) [3p]! oot — . . . .
D(p)= H 5T 37 € f Pitdt boundG,(x,). Manipulating the expression far,(n) in Eq.
pl} (2p) (55) as before, we get
[3p]! _ _ CX, | (P2)(c=4)+3/4
Wexp{ [3plexp(—2p/[3p]) G (x) = p(n)=(n—2K)R(c,p) —)
+2pEi(—2pl/[3p]) +& 2}, (71 _2p
xexr{ - BX—), (78
where Ei denotes the exponential integral K
where
x e pC a—2p
Ei(x):f —dt, x#0. Sin o 1\re ™1
The second product in Eg55) may be reduced as and
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[ Xk
Z.
Equations(75) and(78) are the bounding probabilities of
failure of a LLS composite bundle under applied I_oqd It
is important to note that, while desirable, the boug$x,)
and G,(x,) are not asymptotically convergent &g|0. In

B=1— 2c+M (80)

fact,
Gn(%) 32p%c
c_an<xk>~JX—keX’< N "% ) (@)

which blows up as| 0.
In applying the Chen-Stein theorem to obtain Ef9),

PHYSICAL REVIEW EB9, 026102 (2004

of open boundary conditions, the factorwould have oc-
curred in place oh—2/X=n— « in the above equation.
Substituting Eq(84) in Eq. (4), we obtain

’Hm,n(x)% 1- eXF{ —m(n— 2/X);€(C,p)

cx)\ (A= teq ~2p
X > ex _BT (85

for the composite strength distribution. Note thmah here
represents the volume of the composite. Equa{if) can
thus be interpreted as giving a size scaling for the composite
strength distribution.

Equation(84) is strikingly similar to that derived heuris-
tically by Phoenix and Beyerleif29] for the strength distri-

and also elsewhere, we made the approximation that, fdoution function in the present problem. Phoenix and Beyer-

small \, A=1—exp(—\). Reversing this procedure pres-
ently, we may write

Gn(Xk)~1—eXF{ —(n=2/xJN(c,p)

" CXy (pl2)(c—4)+1/4 sz -
2 o —B )| ®?

and
En(xk)~1—exp[ —(n=2K)R(c,p)

Cx | (P12 (e=4)+3/4 _2p
Xl —= ex _BX_ , (83
k

2

on the basis of Eqg75) and(78).

IV. DISCUSSION

Despite not obtaining converging tight bounds lag-
creases and, decreases, the above forms @f,(x,) and
Gn(xy) suggest the following form for the strength distribu-
tion of n-fiber bundles with power law distributed fibers. In
writing it we drop the subscript ix,, and permitx to vary
continuously:

5 5 cx\ (P2 (=4 +ey
G (x)= 1—ex;{ —(n—2/x)N(c,p)(?)

<o 82|

where B=1+[¢,—In(4pc)/p]yx/2c with —2c<¢,<2c
and 1/4< p,<3/4. Also,N must be bounded betwe&hand
N. If kis the critical cluster size as defined below E8),
then fork>1, k=~ 2/X. Thus, the (—2/x) term in the above
equation may be replaced witih— «. In the practically in-
teresting case af> k, this factor can simply be replaced by

(84)

lein’s formula is based on Smith’s formula, but additionally
accounts for the “stalling” of ax cluster in Eq.(8), i.e., the
event that the continued propagation ot aluster is blocked
by particularly strong fibers at its ends. Since their failure
event is a subset of Smith’s, their strength distribution func-
tion is no greater than Smith’s distribution function. For the
n-fiber bundle subjected to load per fiber, Phoenix and
Beyerlein[29] obtain

. . X —3pl2 :2p
Gn(X)Zl—eXF{—nN(p)(§> eXF<—87”,
(86)
where
= 1 P
_ o1 il _
B=2"1r 1+p2 F(l/p,1)+2(p+l) (87

andI'(1/p, 1) refers to the incomplete gamma function. Also,
for N they have

2ra3p
(p)= 523502

Zou

(88)

Comparing Eq(84) and Eq.(86), it is immediately seen
that the exponential factors are almost the same sBice
~B~1 in the lower tail, and the preexponential power factor
would also be almost the santexcept fore,) if c=1. We
will now show that forp=1 and takingc=1, while the
bounding distribution&,(x) andG,(x) [Egs.(75) and(78)]
closely approximate Eq86), where it is successful in cap-
turing the actual bundle strength distributi¢es seen from

simulations, the boundgespeciallyG,(x)] also succeed in
p<1 with c>1 where Eq.(86) breaks down.

The question thus arises as to the choicec.oClearly,
choosingc=1 in Eq. (60) and Eq.(61) will result in the
finest possible discretization, which nevertheless is coarser
than the true fiber strength distribution. However, choosing
c=1 regardless of the value @f may result in loose error
boundgwhich vary ag0(1/c)] in Eq. (56). Thusc should be
chosen large enough that the errors in Esp) are small,
while not so large that it is an overly coarse discretization of

n. It is also worth mentioning that, if the calculations of the the given power law distribution. When the fiber strengths
preceding sections had been carried out with circular, insteadre power law distributed, it can be seen from Ed) even
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p=1 p=5

v Gplzx)
A En(zk)

MC Distribution

In(- In (1, - G?(z)))

34 32 3 28 26 24 22 2 -2 18 16 -14 12

'20-3.5 ' -I3 -2‘.5‘ ;? -1.5 -‘1 05 log(m) IOg(x)
log(z) p=10
20
FIG. 4. Comparison of Monte CarldMC) generated empirical 1 o
strength distributions with the upper and lower bounds on the =X - MC Distribution
strength distribution whep=1. The upper and lower bounds are \E,m v %(“)
calculated only at the poinfx=x,, Eq.(59)] shown; the lines are ) & Gnlz)
C-spline interpolations between these points, intended merely to= * o Smith [11], Eq. (8)
guide the eye. For all these it suffices to assume that=1, as —T 0 x Phoenix & Beyerlein[20], Eq. (86)
seen in Table I. EAQ
-50
in the simplest case of a 0-1 bundle tleahust increase as P PRy ra
decreases in order to keep the error boundN2/(€¢,181) log(x)

constant for fixed\ ;.

To determine the value af, empirical strength distribu-
tions of bundles ofn=22° fibers were generated from'2
Monte Carlo replications of bundle failure under idealized
local load sharing. The simulation algorithm is the static ver-"-
sion of Newman and Phoenix7] time-dependent simula- *~
tion algorithm. We used this algorithm to calculate the eM-ahility range of the simulations, especially for largerk

pirical distribution down tg=1/128. For smallep than this,  given by Eq.(59) is so small that the approximations made
numerical round-off errors seem to become a problem. 1qq gptain the asymptotic formulas E€75) and Eq.(78) be-
fact, the upper tail of the calculated empirical distribution for come inaccurate. Therefore the bounds plotted in these fig-
p=1/128 is not reliable for this reason. Figures 4 and 5 showres are obtained by evaluating the products directly; for
the empirical strength distributions on Weibull pro_bab_lhty example, the lower bound plotted in these figures is obtained
paper for a range op, the power law exponent, which in- py evajuating the products on the left hand side of &),
versely governs the fiber strength variability. Also shown are=q, (72), and Eq.(74), at eachx=x, given by Eq.(59).

the upper and lower bounds, and G,,. Within the prob- [Recall from Eq.(59) that the corresponding critical cluster
size is given byk?c.] The figures also show curves connect-
ing the calculated distribution function values at differ&nt

FIG. 6. Comparison of Monte CarlMC) generated empirical
bundle strength distribution with Smith’s formula, Phoenix and
Beyerlein’s formula, and the presently calculated upper and lower
bound formulasG,, andG,, (assumingc=1) for p=1, p=5, and
10.

v Gp(zx) =Xi. These smooth curves are obtained by numerical inter-
polation withC splines.
& Gplzp) Figure 6 shows the predictions of Smith’s formula, Phoe-
nix and Beyerlein's model, and the presently calculated up-
MC Distribution per and lower bound formula§,, and G,, together with

Monte Carlo simulation generated empirical strength distri-
butions on the same plot, for each pf1, 5, and 10, for
comparison. As in Figs. 4 and 5, the bounding distributions
are calculated only at=x,, given by Eq.(59) but interpo-
lated usingC splines. Also, the abscissa for each point in

5 - the curve plotting Smith’s formula corresponds to an integral
log(z) x according to (I «/2)x,= 1. (Note that we distinguish be-

FIG. 5. Comparison of Monte CarlMC) generated empirical tween S_mlth’3 abscissag _and ourxy’s.) A.S is clearly seen,
strength distributions with the upper and lower bounds on thethe Smith and the Phoenix a”‘?' Beyerleln_ formulas coincide
strength distribution for @p<1. The upper and lower bounds are 10F p=10. However, a small divergence is already seen at
calculated only at the poinfx=x,, Eq.(59)] shown; the lines are =5, Which widens ap=1. As stated earlier, the Phoenix
C-spline interpolations between these points. Note thal andc ~ and BeyerleinG,, of Eq. (86) is less than that of Smith’s
increases with decreasingas seen in Table I. formula owing to its stricter definition of composite failure.

In(—=1In (1 - Gp(2)))

6
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Also, in comparing with the empirical strength distribution 70
obtained from Monte Carlo simulations, we find that Phoenix
and Beyerlein’s formula generally deteriorates as an approxi- In 2%
mation of the empirical distribution with decreasipgThe 50 |
calculatedG,, andG,,, however, continue to bound the em-
pirical distributions even at smafl, and, in fact, it appears

that the upper boun, becomes an increasingly good ap-
proximation of the empirical distribution gsdecreases.

We now consider how Smith’s formula should be modi-
fied so as to succeed in fitting the empirical strength distri- 10 -
bution at lowp as well. Comparing Smith’s formula E¢B)
with the components 06,(x), we first observe from Eg. !
(74) that it approximately corresponds to the product -10 : . . : e p8,=0 1/13'08 00
KIKS---KL_1x“? in Eq. (8). Thus the essential difference R
between Eq.8) and G,(x) given by Eq.(75) is that the
product of Eq(70) and Eq.(72) replaces the factor'2in Eq.
(8). This product is

40

30 5

In(fV¥/ k)
©
Il
=

20 -

FIG. 7. Variation of the prefactor Eq90) with « for different
values ofp. The unmarked curves belowe=1 correspond tp=1/2,
1/4, 1/8, 1/16, 1/32, and 1/64 as one moves downward. Also shown

(2p)k c\k (2Kk)! here is a line for Smith’s prefactor of'2The rate of increase of the
[Eq. (70 XEQ.(72)]=D(p) K (—) T prefactor from EQ.(90) is clearly slower than that of Smith’s,
: 2 ) for all p.
(4pc)*
~®P(p) ® cx, | 34
NE (—p)(Tk (4Cp)\@c_xk_ (91)
ox, | V4 2c\m
~ K [2Icx
q)(p)( 2 (4ep) = (89) It was noted in Sec. | that Smith’s model assumes that the

two fibers adjacent to & cluster are fresh, and the failure
The important point here is that the factof v Smith’s  probability of at least one of them is approximately
formula is replaced by a factor that varies as2F(K,x). However, the fibers may have seen some prior
®(p)(4pc)¥/\mk. To compare with Smith’s prefactor of load which would decrease their conditional probability of
2", we observe that Smith’s critical cluster sizedswhile  failure[Eq.(9)], especially for smallep. This correction was
the present calculation’s critical cluster sizeki&, for a  also noted as being excessive. In view of the above discus-
fixed stress level. Equating these two, we find that the corredion, it may therefore be inferred that the product of the

prefactor in Smith’s formula should be corrections must have the form given by Eg0).
[(I)(P)%/\/;]f&/i/;' f:(4PC)1NE- (90) V. CONCLUSIONS
In this, f*/4/x represents the part that varies with By using the Chen-Stein theorem for Poisson approxima-

Figure 7 plots the variation of this prefactor for a range oftions, we have bounded the strength distribution of a planar
«. In calculatingf for different p, the values ot from Table  LLS composite bundi¢gand composite, using E¢4)] with
| have been assumed. The figure also shows a line corrégibers whose strengths are distributed according to a power
sponding to Smith’s prefactor of“2 Scaling Eq.(90) (i.e., law distribution F(x)=x1;g<x<1;+ 1{x=1]. The bounds,
sliding the curves down vertically in Fig) Tor p=3, 5, and  especially the upper one, seem to be reasonably good ap-
10 will bring the prefactor of Eq(90) into approximate
agreement with Smith’s'2curve in the smalk regime of the TABLE |. Variation of the parameter with p as determined by
present Monte Carlo simulationfThe lowest stress level Monte Carlo simulations of large bundle failure.
attained in thep=>5 simulation of Fig. 6, IX)~—1.5, corre-

sponds approximately te=7.] For largerx corresponding to p c(p) p c(p) p c(p)
the deep lower tail beyond the reach of present simulations
Fig. 7 suggests the breakdown of Smith’s and Phoenix an 1 40 1 4 3 1
Beyerlein’s formulas even for large At small p, where even 128 8
within the regime of the simulations the critical cluster size 1
is large, Fig. 7 clearly demonstrates the reason for the breal— 23 7 3 5 1
down of the heuristic formulas: A pronounced gap betweer
Smith’s 2¢ curve, and that obtained from E@O0). At p=1/ L 12 l ) 10 1
128, the prefactor actually decreases slowly with increasini32 2
Kk, unlike 2. 1 g 1 1

The conclusions above are also true for the upper bouncg

where the corresponding factor in terms of applied stress is
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proximations of the actual composite distribution for @ts The lessening of the stress concentration ahead of a break
seen in comparisons with Monte Carlo simulations. The factvhich may lead to an overall tough failure mode can also
that such bounding is possible also shows that the compositeccur for other reasons. In a three-dimensional LLS bundle
failure mode is brittle for alp. The closed form expressions (Smith et al. [30]), a greater number of fibers surround a
for the bounds also allow us to see what was unknown bebroken fiber than in a two-dimensional bundle. This lowers
fore: Smith’s formula Eq(8) can predict the strength distri- the probability that an intact fiber ahead of a break will break
bution for all p if its prefactor 2 is corrected to Eq(90). and qualitatively could result in an overall tough failure

The next questions of obvious interest are those ofmode at least for some range @fSimilarly if, unlike in the
whether these results apply to other, similar model materialgpresent model, fiber breaks were allowed to be staggered
and if so, to what extent? While it would be incautious toalong the length of a bundle, the stress concentration caused
speculate on answers, for experience shows that the strendbly a cluster of breaks would be lowered below that caused
of a random heterogeneous material depends subtly and sdoy a cluster of transversely aligned breaks. It is not known if
sitively on the details of its microscopic flaw strengths andthis impels the overall statistics toward the tough failure re-
micro-mechanical load redistribution, we will now briefly gime.
describe some of the questions. In view of these and many other unresolved questions

The power law probability measure assumed in this workabout the fracture behavior of a composite, a prototypical
has a compact support d@,1]. More realistic probability random heterogeneous material, it can be safely stated that
distributions for fiber strength, such as the Weibull distribu-there is a long way to go before one can claim a reasonably
tion Eq.(5), may, however, have a heavy upper tail wipde ~ comprehensive understanding of the extreme value depen-
small (although the realism of this is certainly open to ques-dence between the microscopic fracture processes and bulk
tion since the fiber strength is ultimately bounded by thefracture. Piecing together such understanding will require
atomic bond strengjh Qualitatively, a heavy upper tail im- blending together physical reasoning, probabilistic method-
plies a sizable probability that a growing cluster of fiberology, computational techniques, and experiments. Relying
breaks will encounter a particularly strong fiber which mayexclusively on computer simulations of small systems
block its advance. Whether such hindrance to cluster growtf<10* fibers is likely to result in inconclusive, or worse,
will impact the overall statistics of composite strength in theincorrect understanding of the complex strength statistics of
lower tail and give it a tough character fpr py,, wherepy,  these material systems.
is some threshold, is unknown, especially for realistic bundle
sizes far beyond current_numer_lcal simulation capability. ACKNOWLEDGMENTS

While the above pertains to fiber strength randomness, the
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bers surrounding it. That is, it encourages brittle fracture. In
reality, load sharing is more long range. While the greatest
stress concentration around a cluster of breaks still occurs on
the neighbors of a cluster, fibers further away also typically As described by Arratiaet al. [31], the Chen-Stein
carry some overload. To describe this situation parametrimethod of Poisson approximation is a powerful tool for com-
cally, we may think of overload decay away from a fiber puting an error bound when approximating probabilities us-
break as occurring according to ing the Poisson approximation. Liebe an arbitrary index set
and supposgY;,i el} are 0—1 Bernoulli random variables
with p;=ProY;=1}>0. Thenp;=E[Y;] and we let

APPENDIX A: THE CHEN-STEIN METHOD

K,=Ko/?, (92)

whereKj is the stress concentration on the two intact neigh- A= 2 pi and T= E Yi (A1)

iel iel
bors of a broken fiber,=1 indexes the two fibers adjacent to

a single fiber break,=2 the two subadjacent fibers and so Also let W be a Poisson random variable with mean

on. Itis easy to see that= corresponds to LLS, while=0 - (0 .). For eacti e let J; denote an arbitrarily chosen set
corresponds to ELS described in Sec. I. Also, the load shatst near neighborsof i and let

ing scheme due to Hedgepeth, realistic for an elastic bonded

fiber and matrix, corresponds te=2. Knowing thatv=0

(ELS) corresponds to a tough failure mo@2aniels[1]) and V,=T— 2 Y. (A2)
v=o (LLS) to a brittle mode, a natural question is the fol- jedi

lowing: Is there a sharp boundary in thev plane that sepa-

rates it into a brittle regime and a tough regime? If so, itsWe think of J; as the neighborhood of dependence sfich
location would be interesting from both theoretical and practhat; is independent or nearly independentygffor j ¢ J; .
tical standpoints. Then forACZ, the Chen-Stein theorem asserts that
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|Proq T e A} —ProdWe A}| i 1
2.0 -+ 0.2.0 --- 0 (B1)
<AfY D pip+AfY, D ELYY] — ~
iel jeJ; iel jeJ; so that Ss<e2 2=—8

ProdEqg. (21)UEq. (22)}

+ 2 E{(Yi—p)f(Vi+1)}
el <ProdEq. (B1)}

=Dby+b,+bs, (A3) — Pro{Eq. (23 UEq. (26)}0(y}).  (B2)
Next consider the superset of events E2f) and Eq.(25):
wheref is a function for which|f[|<min(1,1.4"*%) and l
Af=min(1,2A). Theby,b,,b; notation was given by Arra-
tia et al. [31]. Loosely,b; measures the neighborhood size,2; (0 --- 0 21p --- 1o (0-1) 1o --- 1o.  (B3)
. - —/—-/ . i
b, the expected number of neighboring occurrences of L<s<tom(£1+41) A
given occurrence, anb; the dependence between an eventyere we have 2
and the number of occurrences outside its neighborhood of
dependence. ProdEq. (24 UEQ. (25}
<Ba(B1t Ba)(a+t Byt B2 272
€o—(€1+2)
APPENDIX B: DOMINATED CONFIGURATIONS s
OF A 0-1-2 BUNDLE X SZL a’py(€,=9)
It will be shown here that all other configurations listed in =ProfEq. (23) UEQ. (26)}0(7/&). (B4)

Sec. IIC1 have probability whose order of magnitude is
smaller than ProfEq. (23)JEqg. (26)}. We begin with the By a similar calculation, it may be seen that the probabil-
configurations Eq(21) and Eq.(22). Their union starting at ity of Eq. (27) is also ProbEq. (23)J Eq. (26)}0(7/5). Next

fiberi is a subset of the event for Eq. (28) we have
lo—(£,+2)
Prot{Eq. (28)} = 3(a+ frt B2 (2" 3 pa(S)pa(€2=9)
—t1

_ BC - (flwz—zel)moﬁ @1)
\W(anﬂﬁﬂz) m1(€2) 0,0, 021

£4[(€,—2¢,) 00 {1)_ &5

=Prot{Eq.(23)UEq.(26)}O( P Y1

Note here that if

€1(£,—2¢9)°

L:
€2_€1 Y1 Q(l)

the contribution of ProfEq. (28)} will be quite substantial in comparison to P{&y. (23)UEq. (26)}. Next,

€o—(€1+3)
Pro Eq. (29)}<B,(Col1a’t)(a+ B2 1 > al2m 7S Y g4 B+ By) 2~ (L2 D= (o=t =s=1)
s=00({,—2¢4)
32“2 pi(€2)

)2 (a+ P+ By 12

= (Bit Bo)(a+ B1t B, 4,

=ProHEq. (23) UEq. (26)}0O

1
€= €y
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and Prob{Eq. (26)}=(1+ B2) 5
L—-1 s—1
s+t _
Prot{Eq. (30)} < B5(£185at) (a+ By+ B)" (27D X &, 2wl
(a1 No—(€5+t+3)
X(a+ B+ B)"2 "2
X +5,)°
s=€2;€1+2) (atBy) i-p
Bo(a+B1+B3) +’8321 @*ua(€2=9)
S Ti(arpy A .
' X(a+ Byt By 2" (BY)
(€2)
+Bz)n2_((2+2)% The first term in Eq.(B9) reduces to Eq(33). The second
2 1

term when simplified becomes
=Pro4Eq. (23)UEQ. (26)}

2 n2
X O l,—€1)). B 0N st Bt B2 (€242
(a+ﬂ1)(ﬂl+ﬁz)+aﬂlﬂl( 2)(atBit )
Finally, we have . 1
¥ X[1=(y172)" P“][lio {5—1+€2_€1 ] (B10)
ProHEq. (3)}<({1a7'82)(a+ B1)“ That the probability of all the other configurations is domi-

nated by ProfEq. (23)JEg. (26) may be seen in the same

=ProH{Eq. (23) UEQ. (26)} way as before.

(a+ By Next consider the case=p—1. Then
2711 +

ProdEq. (23)}= %Ml“2)(a+ﬁl+ﬂz)nzwzﬂ)
Adding all these probabilities, we have f@r+L<i<p (B11)
+n2_€2_1

and

+B1)(2a+ +82)? af _

Prot{Y,=1}= 52 P2atPUL TP Prob(Eq. (26)} = —=* ua({2) (at By Bp)"e ((2+0),

Ba(a+ B+ B (a+ B1)(B1+ B2) +aBi} B1
X pa(€2)(a+ Br+ By)"2 2

4{(¢,—26,)00)° . APPENDIX C: POISSON APPROXIMATION ERROR
1, Y.t FOR A 0-1-2 BUNDLE

(B12)

X

liO( )/'i-l—

We now bound the Chen-Stein errby+b,+ b; arising
(B7) . A
from the Poisson approximation of the dependent process
Y;. We begin by definingl;={j:|j—i|<€,+L+1} so that
As in the 0-1 case, we turn our attention next to the failurerandom variablesy; and {Y;:j «J;} are independent and,
configurations that start very close to the boundary of theonsequentlyb;=0. As before,
0-1-2 subcomposite. That is, we considesuch thatp<i

<p+L and evaluate the probabilities of the configurations b;=<min(1,1N\5)2(ny,—€,—1)(€£,+L+1)
listed in Sec. IIC1. Equatior{32) continues to hold for / (a—1)72
ProdEq. (23)}. However, the event Eq26) may be decom- X[h2/(ng= €= 1)]
posed according to whethess or not: =min(1,1M2)2(€,+L+1)\3/(n,—€,—1). (C)
i l Boundingb, requires finding pairs of failure configura-
tions such thaty;Y;=1,j €J;. If one or both ofY; andY;
210 -+ 1p{(0-1) 19 --- 12 0 --- 0 ifi<s. arise from a configuration different from E@3) and Eq.
A e -~ '—’_KKL (26), we know that the probability of the resulting over-
258 =

(B8) lapped configuration is PrdBq. (23)UEq. (26}0(¢;*
+(€,—€4) " Y). Therefore we need consider only overlaps of
Eqg. (23) and Eq.(26).

If i >s, the configuration remains E(R6) with s constrained Configurations of the form Eq23) may overlap them-

to lie in the range ¥s<i. ProdEq. (26)} is now given by  selves to produc¥;Y;=1, for j € J; as
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i ! J
2, 0---0 2\10 -+ 15 (0-1) 1p- - - 1011 0.---0 ...
0<s1<L lo—s1—w—1 w<sa<L
l
2 1p - 15(0-1) 1 - -- 101
l2:2
and
i ! J
2, 0 02 1 15 (0-1) 1, -104\20---2(521...
0<s1<L toms1 0<w<L-1
1
..0 ... 0 2\10 -+ 1 (O;l) 1o -+ 1y
0<so<L lo—s2
or they may overlap configurations E@6) as
i !
2, 0---0 2\10 -+ 1 (0-1) 15 - 1011 0---0, ...
0<s1<L fz-—s;-w-—l w<t<sy
J 1
.2\10 -+ 19 (0-1) 19 - - 10J2 0...0
lomsg 0<sa<L
and
i
2:0---0 2\10 - 1p (();1) 1g: - 101\20 v 204...
0<s1<L lo—s1 0<w<L-1
J !
...2\10 -++ 16 (0-1) 15 --- 1042 0...0 .
e 0<sa<L

£2—s2

Turning next to configurations in which E(R6) overlaps itself, we hav¥;Y;=1,j € J;, when

i

LJ
21 O--'O2\10---10(0-1)10---1042 0---0 ...
g 1<s1<L

0<t<s)

!

0---0 X

2 1o -

lo—31

o ()10 12.0. . 0

0<s2—s1<L—%1

and

e2_52 0S82 <L
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i lJ
2, 0---0 2\10 <e- 19 (0-1) 1p--- 101 2 0---0 .
0<t<sy lomsy 1<s1<L

\20 . 20310 042\10 -+ 1p (0;1) 1lg --- 1042 0...0 ,
0<w<s2 £y—s9 0<s2<L (C7)
and finally for configurations in which E¢26) overlaps Eq(23) to produceY;Y;=1, € J;, we have
i 1
2:0---0 2\10 - 19 (0-1) 1p--- 1042 0---0,...
0<t<s1 PR 1<s1<L
J !
202 2, .0...0 2\10---10(0;1)10---104 (C8)
0<w<L 0<s2<L fo—so
In bounding the probability of these configurations the configuration
2\10---10(0-1)10---104 (C9)
ZQ—L+1§22—32<£2
arises repeatedly and has probability
L-1 1
ProEq. (C9}<pB, X, (a+B1)2 %2 (2 (f,—5,—£,—1)=\,0 —L) (C10
sp=0 (a/—"_ﬁl)

With this result in hand, it is readily seen that PfBh. (C2)}=)\§O((a+ B1) ") since the probability of the fiber arrange-
ment to the left of the second pressured element 2 is bounded from abowvg ltlye arrangement to the right of the second

pressured element has probability bounded from above(«+ B,) 1), and these two events are independent.
Similar arguments for the other configurations establish that the Poisson approximation Bs@tNs /(a+ B;)"). Since
\,=0(a'), the Poisson error is bounded more looselyNaD (a'/(a+ B1)")=N,0().
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