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Absence of a tough-brittle transition in the statistical fracture of unidirectional
composite tapes under local load sharing
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We show analytically that a planar, unidirectional fibrous composite, which is an idealized random hetero-
geneous material consisting of stiff fibers of random strength embedded in parallel in a compliant matrix,
fractures in a brittle manner when the fibers engage in idealized, local load sharing. Both the fibers and matrix
are assumed time independent. This brittle behavior occurs irrespective of the disorder~variability! in fiber
strengths, which we represent by a power distribution function. Our result goes far toward settling a long-
standing question, not resolvable by computer simulations, regarding whether or not the brittle failure regime
gives way to a tough, ductile-like failure regime as the variability in fiber strengths is increased past some
threshold. We establish this result by calculating upper and lower bounding distributions for composite strength
using the Chen-Stein theorem of extreme value statistical theory when failure events are dependent. These
bounds both have weakest link character and, by comparing them with empirical strength distributions gener-
ated by Monte Carlo simulations, we find that the upper bound is a good approximation to the actual failure
probability when the fiber strength variability is large. This regime is where previous models have broken
down, raising speculation about a brittle-ductile transition.
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I. INTRODUCTION

In the study of fracture processes and ultimate strengt
random heterogeneous materials, the tough-brittle trans
is of great importance. This transition, abrupt or otherwi
refers to the qualitative change in the failure mode with m
crostructural parameter values from one in which mate
failure occurs by the eventual formation and catastrop
propagation of a single crack~localized damage evolution! to
one in which dispersed microscopic cracks form, grow s
bly, and coalesce to bring about material failure~dispersed
damage evolution!. The ratio of the volume of damage prio
to unstable crack growth to the total volume is small in t
former mode, while it is of the order of 1 in the latter mod
The failure mode—brittle or tough—exhibited by the ra
dom heterogeneous material determines its strength dist
tion, and this makes the study of the tough-brittle transit
interesting from a technological standpoint as tough beha
is usually preferred.

An example of a random heterogeneous material that f
only by the tough mode is theloose bundle of fibersstudied
by Daniels@1#. It consists of an array ofn fibers of equal
length whose strengths are randomly distributed, tensio
between rigid horizontal supports@Fig. 1~a!#. Material fail-
ure, arising from random fiber breakages, is thus a stocha
process. After breaking, a fiber carries no load; its share
the applied load is assumed to be distributed evenly am
the surviving fibers, i.e., the load concentration in each of
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to be

Kr
ELS5

n

n2r
. ~1!

Such a redistribution of applied load among surviving fibe
is called equal load sharing~ELS!. In such a bundle, the
stress concentration on an intact fiber is independent o
physical proximity to a broken fiber and therefore, und
increasing applied load, tough failure occurs by disper
fiber breaking, up to some critical fraction, followed by a
parent catastrophic coalescence of the dispersed fiber
ures. Daniels@1# established through a highly nontrivia
analysis that ifn is large and the fiber strengths are indepe

FIG. 1. ~a! The loose bundle of fibers of Daniels@1#, and~b! a
planar composite material with fibers embedded in a matrix.
©2004 The American Physical Society02-1
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dent and identically distributed~i.i.d.! according to the dis-
tribution function F(x), such that limx↑` x@12F(x)#50,
then the strength of a loose bundle of fibers is Gaussian
mean

x* @12F~x* !# ~2!

and standard deviation

x* AF~x* !@12F~x* !#/An, ~3!

wherex* is the point where the functionx@12F(x)# has its
maximum value~assumed unique!. Note thatx here denotes
the applied loadper fiber, i.e., the total load applied to th
composite isnx. The above statistics refer tox.

More generally, load transfer from broken to intact fibe
will dependupon their mutual proximity, such as when th
stiff fibers of the loose bundle are embedded in a compl
matrix to form a composite@Fig. 1~b!#. If the matrix has a
sufficiently large shear modulus, the load dropped by a b
ken fiber will mostly be communicated to its neighborin
intact fibers through matrix shear. In such a composite,
will assume the matrix to always remain intact, and ident
composite damage with fiber breakage, and a compo
crack with a sequence of neighboring fiber breaks ‘‘ne
each other~to be made precise shortly!. Unlike in ELS, a
formula giving the composite strength distribution, given
arbitrary fiber strength distributionF(x), has been elusive
when load sharing is localized. Special cases of this prob
have therefore been pursued over the years by various
searchers, with restrictive assumptions on fiber strength
tistics and interaction between broken and intact fibers.

Numerous works using either analytical methods or co
posite failure computer simulations have established tha
the fiber strength variability is small, the composite failu
mode will be brittle. They have also gone further to det
mine the composite strength distribution in this case.
fewer works, however, have investigated the regime of la
fiber strength variability through computer simulations, a
it is not at all clear, based on these, whether the brittle m
will continue to be followed as fiber strength variability in
creases or a tough-brittle transition will occur. The dilemm
is basically this: If a sizable crack forms in a composite w
large fiber strength variability, it is possible that it will gro
catastrophically by sequentially overloading and failing
tact fibers surrounding itself, i.e., fail in a brittle manner. O
the other hand, it is also possible that considerable dispe
fiber failure precedes the formation of a sufficiently lar
catastrophic crack, so that composite failure actually occ
as a result of coalescence of dispersed cracks, i.e., fa
follows the tough mode. This is seen in computer simulatio
where composite size is necessarily limited. While the la
possibility is unlikely when the fiber strength variability
small, we cannot rule it out when the fiber strength variab
ity is large, and it will be seen in this work that the failu
mode followed depends subtly upon the details of fib
strength statistics determined by fiber flaw character,
load sharing between intact and broken fibers.

To make these qualitative notions precise, we follo
Gücer and Gurland@2#, Rosen@3#, and Scop and Argon@4# in
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treating the composite as a serial arrangement of mech
cally and statistically independent bundles each of lengthd
@Fig. 1~b!#. This so-called chain-of-bundles assumption ide
tifies composite failure as the failure of its weakest bundle
ann-fiber composite of lengthL is subjected to tensile loadx
per fiber and the strength distribution for each of itsm
5 dL/(2d) e bundles isGn(x), then by the chain-of-bundle
assumption the composite strength distribution is given b

Hm,n~x!512@12Gn~x!#m, x>0. ~4!

The problem of determining the composite strength distri
tion Hm,n is therefore reduced to determiningGn(x), given a
load sharing scheme and strength distribution for individ
fibers.

Within a bundle in which some fibers are broken, vario
local load sharing models have been proposed in the lit
ture for how the total applied loadnx is distributed among
the intact fibers. The simplest model, used in this work, is
idealized local load sharing~LLS! model due to Harlow and
Phoenix@5#. In this model, the overload on an intact fib
adjacent to, broken fibers~counting on both sides, excep
for the first and last fibers in the composite! all along the
midplane of a bundle is assumed to beK,511(,/2). This is
equivalent to assuming that each broken fiber transfers
its load to each of its two nearest intact neighbors in
same transverse plane. If the load applied to the compo
per fiber isx, an intact fiber adjacent to, broken fibers will
carry load@11(,/2)#x. A more realistic model for elastic
fibers in an elastic matrix is due to Hedgepeth@6#. While
Hedgepeth’s model assigns stress concentrations to the fi
adjacent to a cluster of breaks, some of the load is distribu
to fibers further away, the amounts decreasing quickly w
distance. However, his model is too complicated for t
probability methods of the present work.

The Weibull distribution@7# is often used to model the
random strengthX of fibers. For a fiber segment of length 2d,

F~x!5Prob$X<x%512exp@2~2d/L0!~x/x0!r#, x>0.
~5!

Here r is called the shape parameter andx0 is the scale
parameter relative to lengthL0 , the gauge length in tensio
testing. The study of bundle failure is simplified by assumi
that a break anywhere in a 2d long fiber segment can b
repositioned to its center. Also, ifx!x0 ~i.e., in the lower
tail!, the Weibull distribution is well approximated by th
power law distribution

F~x!'
2d

L0
S x

x0
D r

. ~6!

In what follows, we take (2d/L0)(1/x0
r)51 with no loss in

generality; an alternative view-point is thatx denotes thex of
Eq. ~6! normalized by @L0 /(2d)# (1/r)x0 , and thusF(x)
5xr. In view of these assumptions about the load shar
and fiber strength within each bundle, the question po
earlier can be reworded as follows: In a planar compo
bundle obeying LLS, is there a tough-brittle transition asr
decreases, i.e., as the variance in fiber strength increase
2-2
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ABSENCE OF A TOUGH-BRITTLE TRANSITION IN . . . PHYSICAL REVIEW E69, 026102 ~2004!
The brittle and tough failure modes, qualitatively d
scribed above as composite failure by catastrophic crack
tension or coalescence of a number of smaller cracks, res
tively, were characterized by Harlow and Phoenix@5# in
terms of the bundle strength distribution. By enumerating
possible sequences of fiber breakage leading up to bu
failure, and adding up their probabilities to findGn(x) for
n51,2, . . . ,9, they numerically found that there exists
characteristic distribution functionW(x) independent ofn
for r55, 10, and 15 such that

Wn~x![12@12Gn~x!#1/n ——→
n↑`

W~x! for x.0. ~7!

They found that convergence is rapid: atx50.35 for r
510, uWn(x)2Wn11(x)u,10211 for n>5, and that the
speed of convergence increases withr. They also found that
such a characteristic distribution function does not exist fo
loose bundle of fibers, which fails in a tough manner. Th
they characterized the brittle failure mode as one in wh
the composite strength distribution admits a weakest
scaling, Eq.~7!. Conversely, in the tough failure mode, the
showed that this scaling does not hold. Harlow and Ph
nix’s conclusions have since been verified on much lar
composites~a few thousand fibers! thann59 using efficient
recursion algorithms due to Zhang and Ding@8# and Wu and
Leath @9#.

Harlow and Phoenix@5# reason thatW(x) represents the
probability of failure of one ofn weak links in the bundle.
Harlow and Phoenix@10# and Smith@11# identify the physi-
cal event corresponding to the failure of a weak link: t
formation of clusters of breaks starting from a single ‘‘see
fiber break~with probabilityxr), and its growth by failing at
least one of its two neighbors„with probability 12@1
2(K jx)r#2, j 51,2, . . . ,k21, which for small (K jx)r is ap-
proximately 2(K jx)r

…. In the limit asn→` andr→` with
logn/r→c,0,c,`, Smith proves thatGn(x) will converge
to

Gn~x!'nxr@2~K1x!r#@2~K2x!r#¯@2~Kk21x!r#

5n2k21K1
rK2

r
¯Kk21

r xkr, ~8!

whereK,511,/2 andk is the so-calledcritical cluster size
and is the integer that satisfiesKk21x,1,Kkx. Remark-
ably, when compared with empirical distributions fro
Monte Carlo simulations, it is found that Smith’s formula
accurate forr as small as 3. A possible reason why Smith
formula breaks down for smallerr is seen by examining the
factor 2(K jx)r in Eq. ~8!. His model assumes that each
the two fibers surrounding thej cluster is ‘‘fresh,’’ i.e., that
neither of them has survived a previous overload. The fail
probability of a fiber at load (K jx)r conditional on the even
that it has survived loadK j 21x is

~K jx!r2~K j 21x!r

12~K j 21x!r , ~9!

which, while close to (K jx)r for larger, is much smaller for
small r. In this respect, Smith’s formula overestimates t
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probability of cluster extension. Note that replacing each f
tor (K jx)r in Eq. ~8! by Eq. ~9! does not improve the agree
ment. In fact, this correction is excessive and the result
formula greatly underestimates the failure probability.

The conclusion of Harlow and Phoenix@5# about the ex-
istence of a characteristic distribution functionW(x) was
proved rigorously by Kuo and Phoenix@12# using a renewal
theory argument forr>3. They also suggested a way
tighten their argument forr.2. This did not guarantee, how
ever, that the probability of failure of a large bundle w
truly represented by a weakest-link arrangement ofn links
each followingW(x), the stumbling block being the relativ
magnitude of error resulting from nondominating eigenv
ues compared to the dominating one 12W(x).

To get a sense of the form of the distribution for compo
ite strength for a wide range of possible fiber strength sta
tics, Harlow@13# further simplified the bundle model abov
and considered a LLS bundle in which fiber strengths
either 0 or 1 with probabilitiesp and 12p, respectively. He
set up a primitive recursion matrix which gives the probab
ity of failure of a (j 11)-fiber bundle given the probability o
failure of a j-fiber bundle and using the Perron-Frobeni
theorem proved the existence of the characteristic distr
tion function in this case, and the true weakest-link proba
ity structure in the lower tail~relevant to large bundles! for
arbitraryp. Duxbury and Leath@14# also conducted a simila
recursive, eigenvalue based analysis but obtained a sim
analytical result for the lower tail ofW(x). Harlow and
Phoenix@15# treated the same problem using the Chen-St
method for the Poisson approximation and obtained an
pression for the composite strength distribution for lar
bundles equivalent to that of Duxbury and Leath@14#. The
advantage of the Chen-Stein approach, used in the pre
work, over the Perron-Frobenius approach is that it give
closed form expression for both failure probability and
bound on the error resulting from nondominating eigenv
ues of the recursion matrix.

Phoenix and Beyerlein@16# consider the 0-1 fiber mode
as above, but imposed a more dispersed version of L
called tapered load sharing, in which the load of a failed fib
is distributed to the nearest and next nearest neighbors
2:1 ratio. In this case too, they found explicit asympto
expressions forW(x), especially in the lower tail, and
showed rigorously that a composite under 0-1 fiber stren
admits a weakest link scaling in terms ofW(x), with dimin-
ishing relative error as the bundle sizen increases, i.e., un
dergoes brittle failure, regardless of the probabilityp that a
fiber has 0 strength.

Recently, the statistics of the failure process and ultim
strength in composites have been studied extensively u
Monte Carlo computer simulations~e.g., Beyerlein and
Phoenix@17#, Landis et al. @18#, and Wu and Leath@19#!.
These studies go beyond the simplest planar LLS compo
bundles and are able to model failure of two-~2D! and three-
dimensional ~3D! composites incorporating more compl
cated but realistic load sharing schemes based on a true
cromechanical analysis. Load concentration still occurs
fibers next to clusters of broken fibers, but the load even
ally grows as the square root of cluster size, with more d
2-3
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tant fibers taking up the remainder. These simulations
limited, however, to modest bundle or composite sizes du
rapidly increasing failure sequence sizes and pattern c
plexity, and in the case of large variance in fiber strength
can lead to egregious uncertainties in the results, as reve
by the following example.

Assuming Hedgepeth and Van Dyke@20# load sharing,
and Weibull fibers in a 3D bundle with hexagonally array
fibers, Maheshet al. @@21#, Fig. 13# find that a weakest-link
scaling, Eq.~7!, exists down tor51 for bundles with more
than 225 fibers and that the characteristic distribution fu
tion W(x) can be captured reasonably well with a Smith-li
model based on Eq.~8!. Using the same empirical distribu
tion data, however, they also obtain agreement with the t
scale model of fracture due to Curtin@22,23#. In his view the
composite fails in a brittle matter with the failure of an
subsystem~group of a certain number of fibers!, but the fail-
ure of the subsystem itself falls in the tough failure regim
@@21#, Fig. 18#. To determine which of these possibilities
true as composite size increases~and only one, if either, can
be true!, would require knowledge of the lower tail of th
bundle strength distribution. Such is not presently obtaina
due to computational and algorithmic limitations. Analytic
results are therefore essential in putting approximate an
ses and interpretations from Monte Carlo simulations
firmer ground.

We must mention here the extensive work on the clos
related problem of composite lifetime in which fibers ha
random lifetimes depending on their load histories~Curtin
and Scher@24–26#, Newman and Phoenix@27#!. A brittle-
tough transition does occur in this case atr51. Also, owing
to their similarity to mechanical fracture, we mention stud
of conduction breakdown in random fuse networks and e
ment breakdown in elastic spring networks. A review
these works and their relationship to the present mode
composite fracture can be found in Phoenix and Beyer
@16#.

In this work we develop bounds onGn(x) for a planar,
n-fiber LLS bundle for allr both from above and below. Ou
approach will be as follows: We first consider a compos
whose fibers can take on one ofr !n distinct strength values
following a prescribeddiscrete distribution. Section II A de-
scribes this composite. Sections II B–II E are devoted to
timating the strength distribution of such a composite
gether with error bounds on the estimate using induction,
the Chen-Stein theorem of extreme value statistics. With
result for the discrete strength case in hand, we then proc
to bound the strength of a composite whose fibers are
tributed according to a continuous power law, which guid
the choice of discrete probabilities and associated stre
values. These bounds are obtained in Sec. III by sandwic
the continuous power law distribution between two discr
strength distributions and applying the result of Sec. II
The main results are in Sec. IV, where we compare
present bounds with predicted forms of the bundle stren
distribution of previous heuristic models in the literatur
thought to be valid~based on comparison with Monte Car
generated strength distributions! for r.1 but not for smaller
r. We will show that these heuristic distributions are sligh
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incorrect even for larger and point out why this may not be
apparent within the probabilistic range of the simulations.
arriving at the correct scaling of the number of fibers susc
tible to failure ahead of a cluster of breaks in Eq.~90!, we
will also show how these heuristic formulas can be amen
to make them applicable to allr.0.

II. BUNDLES WITH DISCRETE FIBER STRENGTH

A. Notation

Let I 5$1,2, . . . ,n% be an index set used to number th
fibers in a bundle and let (Zi : i PI ) be i.i.d. random variables
distributed according to Prob$Zi50%5b0[a,Prob$Zi51%
5b1 ,Prob$Zi52%5b2 , . . . ,Prob$Zi5r %5b r where a
1b11b21¯1b r51, andb j.0 for j 50,1, . . . ,r , which
will be used in constructing discrete fiber strengths. Since
repeatedly discuss the eventø j 5q

p $Zi5 j %, wherep andq are
integers with 0<q,p<r , in what follows, it will be helpful
to introduce a shorthand notation for it. We will hencefor
take $ZiPpq% to be synonymous with ˆZiP$q,q
11, . . . ,p%‰. Then Prob$Zi5pq%5( j 5q

p b j . For example, if
we specify $Zi531%, it implies the event$Zi51%ø$Zi
52%ø$Zi53%. Also, let us define

g j[
a

a1b11¯1b j
~10!

for j 51,2, . . . ,r andg0[1.
Consider ann-fiber LLS bundle whosen fibers are in-

dexed by the setI. Let the strengthSi of its i th fiber besZi

where 0<s0,s1,s2,¯,s r are arbitrary but fixed rea
numbers. Let this bundle be subjected to a far-field ten
load nx in the fiber direction~we take the fiber cross
sectional area as unity! so that the normalized stress per fib
is x. If x,s0 or s r<x, all the fibers and hence the bundl
survive or fail, respectively, with probability 1. If, howeve
s0<x,s r , the applied stressx initially causes partial fail-
ure of the bundle by breaking those fibers whose streng
are smaller thanx. We assume that failure of individual fiber
overloads their neighbors according to the idealized lo
load sharing model described in Sec. I. Some of the ov
loaded fibers may fail and produce even greater overload
the remaining intact fibers. This process of fiber break
followed by intact fiber overloading may eventually lead
failure of all the fibers in the bundle, i.e., catastrophic bun
failure. We wish to calculate the probability of this event.

Next we define non-negative integers (, jPZ1 : j
50,1, . . . ,r ) such that @11(, j21)/2#x,s j<@1
1(, j /2)#x if s j>x and , j50 if s j,x. That is, , j is the
smallest number of broken neighbors that must surround
intact fiber of strengths j in order to overload it to failure
under applied loadx. We may assume,0,,1,,2,¯,, r
for, if , j5, j 11 for somej P$0,1,2, . . . ,r 21%, then fibers of
strengths j ands j 11 are indistinguishable in terms of the
failure behavior at fixed appliedx and we may eliminate one
say , j 11 , from consideration and set Prob$Zi5 j %5b j
1b j 11 .

Let Xn denote the smallest applied tensile stressx at
which the bundle fails;Xn is then called the bundle strength
2-4
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ABSENCE OF A TOUGH-BRITTLE TRANSITION IN . . . PHYSICAL REVIEW E69, 026102 ~2004!
We seek its distribution functionGn(x)5Prob$Xn<x% for
x>0. The analysis is readily extended to a chain ofm statis-
tically independent such bundles each consisting ofn fibers.
Letting the strength of the chain be that of its weak
bundle, and denoted asXm,n , its distribution function is
readily obtained onceGn(x) is known, and isHm,n(x)
5Prob$Xm,n<x%512@12Gn(x)#m for x>0 due to the se-
rial nature of the assemblage.

For the purpose of an overview of the analysis to follo
in subsequent sections, we give here a short sketch of
arguments made. In what follows, asub-bundlewill refer to
some collection of contiguous fibers of then-fiber bundle.
We begin in Sec. II B by evaluating the probability of failu
of a sub-bundle within which its fibers are restricted to ha
strengthss0 and s1 ~to be called a 0-1 sub-bundle!. The
approach follows that of Harlow and Phoenix@15# although
we pay more attention here to the effects of the two s
bundle boundaries. Then in Sec. II C we consider all
possible ways in which a sub-bundle whose fibers are
lowed strengthss0 , s1 , and s2 ~denoted a 0-1-2 sub
bundle! can fail. By evaluating the probability of each o
thesefailure configurationswe show that two of the configu
rations asymptotically dominate the rest in the magnitude
their probabilities of occurrence. These two dominant 0-
configurations contain a 0-1 sub-bundle in them; to evalu
the failure probability of the 0-1-2 sub-bundle one therefo
needs the probability of failure of a 0-1 sub-bundle evalua
in Sec. II B. Continuing this process inductively to a 0-1-2
sub-bundle, we have in that case another set of failure c
figurations, all but two of whose probabilities turn out to
asymptotically negligible. These two failure configuratio
similarly involve a 0-1-2 sub-bundle. As depicted schema
cally in Fig. 2 we will find that the two asymptotically dom
nant failure events of a0-1-2-̄ -r sub-bundle consist o
successively nested failing sub-bundles of lower order. Th
probabilities of occurrence,m r(n) as given in Eq.~55!, con-
stitute our first main result for the strength distribution of
0-1-2-̄ -r bundle. The error bounds onm r(n) become

FIG. 2. The dominant failure event in a0-1-2-̄ -r sub-bundle
schematically showing the successively nested failing sub-bun
0-1, 0-1-2, . . . , 0-1-2-̄ -(r 21). The view shown is a part of the
cross section of ann-fiber bundle.
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smaller asymptotically as ,1∧(,22,1)∧¯∧(, r
2, r 21)∧(n2, r)→`.

B. Strength of a 0-1 sub-bundle

Let I 15$p,p11, . . . ,p1n121%,I ,p<n2n111, be the
index set of ann1-fiber sub-bundle starting at fiberp in the
n-fiber bundle such thatZi510 for i PI 1 , i.e., all the fibers
within the sub-bundle indexed byI 1 have strength eithers0
or s1 . Let Zi ,i PI 1 , be distributed as stated in Sec. II A s
that the probability of occurrence of a sub-bundle consist
entirely of fibers withZi510 is (a1b1)n1 for any p. Let
n1>,1 . We also define two imaginary fibers at positionsp
21 and p22 such thatZp215Zp2251. Observe that the
sub-bundle indexed byI 1 fails if and only if the sub-bundle
indexed byI 1ø$p22,p21% fails, so that their probabilities
of occurrence are equal. As will be seen shortly, these im
nary left boundary fibers simplify the consideration of failu
configurations close to the boundary while leaving the pr
ability of failure of the sub-bundle unchanged.

We now approximate the probability of failure of this su
bundle, called a 0-1 sub-bundle, using the Chen-S
method. We begin by defining events associated with fi
i PI 1ø$p22,p21% that produceYi51 whereYi is the de-
pendent Bernoulli process defined in Appendix A. Followi
Harlow and Phoenix@15# we define the eventYi51,i PI 1 , if
Zi51,Zi 1,11150,i 1,111PI 1 , and there is exactly one 1

amongZi 11 ,Zi 12 , . . . ,Zi 1,1
. Otherwise we setYi50.

It is convenient to express this definition pictorially as

~11!

and henceforth we refer to such depicted occurrences oYi
51 as failure configurations in the sub-bundle indexed byI 1
since if they occur the sub-bundle fails. Observe that
have not shown then12(,112) 10 fibers surrounding this
configuration in the sub-bundle. On this configuration,
have marked fiberi and have also labeled thepressuredele-
ment with a↓. This pressured fiber is surrounded by at le
,1 broken fibers so that it will fail. Note that the failure o
the pressured fiber results in catastrophic failure of the
sub-bundle since it implies that all other 1’s in it will b
overloaded as well.

Following the Chen-Stein method~see Appendix A!, we
first evaluate Prob$Yi51% as

es
E@Yi #[Prob$Yi51%55
a,1~a1b1!n12,1, if i 5p22,

,1b1a,1~a1b1!n12~,111!, if i 5p21,

,1b1
2a,1~a1b1!n12~,112!, if p< i ,p1n12,121,

0, if i>p1n12,121,

~12!
2-5
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whereYp2251 if the event

~13!

occurs@i.e., a special case of Eq.~11!# and Yp2151 if the
event of Eq.~11! occurs with i 5p21. Also for i>p1n1
2,1 configurations of the form Eq.~11! cannot occur since
they necessarily specify,111 fibers, which cannot be ac
commodated to the right of the starting fiber of the config
ration. Observe also that our special assignmentsZp22
5Zp2151 enable us to treat the special configurations as
ciated with the left boundary as also being configurations
the form Eq.~11!.

If we setl15E@T#5( i 5p
p1n121Prob$Yi51%, we obtain

l1~n1!5~n12,1!~,1a,1b1
2!~a1b1!n12~,12!

3H 11OS 1

n12,1
D J . ~14!
is

02610
-

o-
f

Then from Eq. ~A3! we approximately have Prob$T50%
'exp(2l1) with an error b11b21b3 whose magnitude
we presently bound. We first chooseJi5$ j :u j 2 i u<,111%
to be the neighborhood of dependence of fiberi. This choice
for Ji givesb350 because thenYi and$Yj : j ¹Ji% are inde-
pendent as there are no common fibers involved betw
them. SinceVi depends only on$Yj : j ¹Ji%, Yi and Vi are
independent and thereforeb350. Also from Eq. ~A3! we
have forb1

b1<min~1,1/l1!2~n12,1!~,111!@l1 /~n12,1!#2

5min~1,1/l1!2~,111!
l1

2~n1!

~n12,1!
. ~15!

Here we have multiplied by only the factorn12,1 because
pipj50, when eitheri .n12,1 or j .n12,121, or both.

Boundingb2 in Eq. ~A3! requires finding pairs of failure
configurations such thatYiYj51 for j PJi . For 0<s,,1 ,
we haveYiYj51 only for a configuration of the form
~16!
1
s

nd
as
and for fixed s, this has probability sb1
3a,11s(a

1b1)n12(,11s13) so that

(
s50

,121

E@YiYi 1s11#< (
s50

,121

sb1
3a,11s~a1b1!n12~,11s13!

<b1
3a,1~a1b1!n12~,113!(

s50

`

sg1
s

5b1a,111~a1b1!n12~,112! ~17!

when i<p1n12,121 and is 0 otherwise. Also, wheni
5p22 or i 5p21, the probability of those configurations
l1O„1/(n2,1)…. Therefore,

b2<min~1,1/l1!~n12,1!b1a,111~a1b1!n12~,112!

<min~1,1/l1!
2al1

,1b1
~18!
so thatb2 is l1O(1/,1) as l1↓0. For smalll1 , exp(2l1)
'12l1 so we may write the probability of failure of our 0-
sub-bundle,m1(n1), including the Chen-Stein error bound a

m1~n1!5~n12,1!~,1a,1b1
2!~a1b1!n12~,112!

3H 16OS 1

,1
1

1

n12,1
D J . ~19!

Anticipating the pattern that will emerge from the 0-1-2 a
0-1-2-3 calculations in Secs. II C and II D we rewrite this

m1~n1!5~n12,1!C0,1a,1~a1b1!n12,1

3H 16OS 1

,1
1

1

n12,1
D J ~20!
2-6
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where

C05
b1

2

~a1b1!2 5~12g1!2.

C. Strength of a 0-1-2 sub-bundle

The next step toward an approximate formula for t
probability of failure of a general0-1-2-̄ -r sub-bundle,
for r>2, is the evaluation of the failure probability of a 0-1
sub-bundle, i.e., one whose fibers haveZi520 .

We let I 25$p,p11, . . . ,p1n221%,I index a sub-
bundle for somep<n2n211 such thatZi520 for i PI 2 .
Let Zi be distributed as stated in Sec. II A. As in the case
the 0-1 sub-bundle, setZp225Zp2152 for fictitious fibers at
positions p22 and p21 to simplify the consideration o
boundary effects. Then the sub-bundle indexed byI 2 fails if
and only if the sub-bundle indexed byI 2ø$p22,p21% fails.
Also let n2>,2 .

Our procedure for approximating the failure probability
this sub-bundle is similar to that of the 0-1 sub-bund
though it is more complicated due to the much larger num
of possible failure configurations. We begin by defining fa
ure configurations in the 0-1-2 sub-bundle in Sec. II C 1 a
in Sec. II C 2 we evaluate their probabilities. Appendix C
concerned with bounding the Poisson approximation e
b11b21b3 .

1. Failure configurations

The simplest failure configurations of the 0-1-2 su
bundle are direct extensions of Eq.~11!,
02610
f

,
r

d

r

-

~21!

and

~22!

In scanning the 0-1-2 sub-bundle from left to right, if eith
of these configurations is found we setYi51 and consider
the sub-bundle failed.

In addition to these direct extensions, there are configu
tions in which a pressured fiber withZi52 is overloaded to
failure by the earlier failure of a nearby 0-1 sub-bundle.
these configurations, we denote

to be a failing 0-1 sub-bundle with,22s fibers andL is
taken as a positive integer such thatL,,1∧,22(,111).
Also, ^0-1& denotes the 0-1 failure configuration, Eq.~11!. „It
turns out later that optimallyL52 logg1

$min@,1,,22(,1

11)#%.… Some configurations to consider are therefore
~23!

~24!

~25!

~26!
2-7
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~27!

~28!

where, in this last configuration, failure of the 0-1-2 sub-bundle occurs by failing a pressured 2 fiber, which requires the
of two 0-1 sub-bundles, one on each side.

Failure configurations of a 0-1-2 sub-bundle need not have a 2 fiber at the pressured position. The following are valid fail
configurations, which are not counted by the failure configurations listed thus far. In these cases, we take the 0-1 sub
failure configuration as the pressured element, and thus can have

~29!
an

e

u-

ns
ons

ce
art

ce,
and

~30!

and, indeed, a sufficiently long failing 0-1 sub-bundle c
double as a failing 0-1-2 sub-bundle, namely,

~31!

A few remarks about these configurations are in ord
th
pa

d
b

02610
r.

First, we claim that the above collection of failure config
rations is exhaustive in that a failing sub-bundle ofZi520 ,
i PI 2 , fibers must contain at least one of the configuratio
listed above. Second, not all the above listed configurati
are possible for arbitrary,1 and,2 . If, for instance,1.,2
2(,111), the configurations Eq.~25! and Eq.~28! are im-
possible. Third, notice that in configurations Eq.~26! and Eq.
~29! we specify certain fibers to the left of fiberi, whereas in
the other configurations we do not. This is done to redu
overlap between configurations so that the dominating p
of the Poisson approximation error,b2 , can be kept small in
comparison to the probability of bundle failure. For instan
without fibers to the left of fiberi in Eq. ~26!, we have the
configuration 2 10 ¯ 10 2 0¯ 0 which may overlap Eq.
~23! as
re
and this results inb2 being of the order of the probability
being estimated. Using the methods of the next section,
probability of this event may be seen to be of order com
rable to the probability of occurrence of either Eq.~23! or
Eq. ~26!, which dominate the probability being estimate
Since a tight error bound is desired, this situation is to
avoided.
e
-

.
e

2. Failure probability

The probability of occurrence of any of the various failu
configurations listed in Sec. II C 1 depends oni PI 2 . Since
each configuration specifies at least,212 fibers to the right
of fiber i,

Yi50 for i>p1n22,221,
2-8
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that is, by definition the sub-bundle cannot be faile
Thus we letL< i ,p1n22,221, and evaluate the probabi
ity of occurrence of configurations Eq.~23! and Eq.~26!.
We show that these are the dominant failure configuration
q
r

u

r

02610
.

in

that their probability of occurrence is of higher ord
than that of all other failure configurations listed
Sec. II C 1.

From the configuration Eq.~23! and Eq.~20! we have
Prob$Eq. ~23!%5~b11b2!b2~a1b11b2!n22~,212! (
s50

L21

asm1~,22s!

5
~a1b1!~b11b2!b2

b1~a1b11b2!2 m1~,2!~a1b11b2!n22,2$16O~g1
L!%, ~32!

whereg j is defined in Eq.~10!. Also, for the configuration Eq.~26! we have

Prob$Eq. ~26!%5~b11b2!b2
2(

s51

L21

(
t50

s21

as1tm1~,22s!~a1b11b2!n22~,21t13!

5
b2

2a~a1b1!~b11b2!

b1~a1b11b2!2$~a1b1!~b11b2!1ab1%
m1~,2!~a1b11b2!n22,2$16O~g1

L!%. ~33!

Adding the disjoint probabilities Eq.~32! and Eq.~33! we obtain

Prob$Eq. ~23!øEq. ~26!%5
b2~a1b1!~2a1b1!~b11b2!2

b1~a1b11b2!2$~a1b1!~b11b2!1ab1%
m1~,2!~a1b11b2!n22,2$16O~g1

L!%. ~34!
r

en-
-
ess
r
or
n-

e,
er-
It is shown in Eq.~B7! of Appendix B that the sum of the
failure probability contributions of failure events besides E
~23! and Eq.~26!, listed in Sec. II C 1, is of diminished orde

Prob$Eq. ~23!øEq. ~26!%

3OS g1
L1

,1$~,222,1!∨0%3

,22,1
g1

,1D . ~35!

Furthermore, it is shown there that the probability contrib
tion of the boundary configurations withp< i<p1L is of
diminished order

Prob$Eq. ~23!øEq. ~26!%OS L

n22,2
D , ~36!

where 0<L<,1 . In the asymptotic analysis, the parameteL
will be given special properties below.

Settingl25E@T#5( i 5p
p1n221Prob$Yi51%, we have from

Eq. ~34!, Eq. ~35!, and Eq.~36! that

l2~n2!5~n22,2!C1m1~,2!~a1b11b2!n22,2

3H 16OS g1
L1

,1$~,222,1!∨0%3

,22,1
g1

,1

1
L

n22,2
D J , ~37!

where

C15
~g12g2!~11g1!~12g2!2

g1~12g1!~12g1g2!
.

.

-

ChoosingL5 d2 logg1
@,1†(,22,1)# e, we can make the erro

term close to its smallest value with respect to varyingL so
that

l2~n2!5~n22,2!C1m1~,2!~a1b11b2!n22,2

3H 16OS ,1$~,222,1!∨0%3

,22,1
g1

,1

1
d2 logg1

@,1∧~,22,1!# e
n22,2

D J . ~38!

As in the 0-1 case, we still need to compute the Ch
Stein error termb11b21b3 arising from the Poisson ap
proximation of the dependent, bundle failure event proc
Yi . We show in Appendix C that this error is of orde
l2O(g1

L) and therefore is smaller in order than the err
generated by omitting all but the two most dominant co
figurations and boundary configuration terms.

Thus, the probability of failure of a 0-1-2 sub-bundl
accounting for both boundary and Poisson approximation
rors, is

m2~n2!5~n22,2!C1m1~,2!~a1b11b2!n22,2

3H 16OS ,1$~,222,1!∨0%3

,22,1
g1

,11
1

,1
1

1

,22,1

1
d2 logg1

@,1∧~,22,1!# e
n22,2

D J ~39!
2-9
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where

C15
b2~a1b1!~2a1b1!~b11b2!2

b1~a1b11b2!2$~a1b1!~b11b2!1ab1%

5
~g12g2!~11g1!~12g2!2

g1~12g1!~12g1g2!
.

D. Strength of a 0-1-2-3 sub-bundle

Extending the previous setup to 0-1-2-3 sub-bundles,
let I 35$p22,p21,p,p11, . . . ,p1n321%,I for some p
<n2n311 such thatZi530 for i PI 3 . Let Zi be distributed
as described in Sec. II A except thatZp225Zp21521 . Also
let n3>,3 .

Let L be as defined in Sec. II C 1 and let us denote
failing 0-1-2 sub-bundle,32s fibers long by
02610
e

a

Configuration Eq.~23! then generalizes to

~40!

and

~41!

and configuration Eq.~26! generalizes to
~42!

and

~43!

The probabilities for these events~we do not write explicit error bounds here! sum to

Prob$Eq. ~40!%5~b11b21b3!b3~a1b11b21b3!n32~,312! (
s50

L21

asm2~,32s!

5
~a1b11b2!~b11b21b3!b3

~b11b2!~a1b11b21b3!2 m2~,3!~a1b11b21b3!n32,3, ~44!

and

Prob$Eq. ~41!%5~b11b21b3!b3~a1b11b2!n32~,312! (
s50

L21

asm1~,32s!

5
~a1b1!~b11b21b3!b3

b1~a1b11b21b3!2 m1~,3!~a1b11b21b3!n32,3. ~45!

Since

m1~,3!

m2~,3!
5OH ,32,1

~,32,2!~,22,1! S a1b1

a1b11b2
D ,32,2J 5OH S 1

,32,2
1

1

,22,1
D S g2

g1
D ,32,2J ,

the probability given by Eq.~44! dominates that given by Eq.~45!. Next we find that

Prob$Eq. ~42!%5~b11b21b3!b3
2(

s51

L21

(
t50

s21

as1tm2~,22s!~a1b11b21b3!n32~,3131t !

5
b3

2a~b11b21b3!~a1b11b2!

~b11b2!$~a1b11b2!~b11b21b3!1a~b11b2!%
m2~,3!~a1b11b21b3!n32~,312! ~46!
2-10
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and

Prob$Eq. ~43!%5~b11b21b3!b3
2(

s51

,21

(
t50

s21

as1tm1~,32s!~a1b11b21b3!n32~,3131t !

5
b3

2a~b11b21b3!~a1b1!

b1$~a1b1!~b11b21b3!1ab1%
m1~,3!~a1b11b21b3!n32~,212!. ~47!

Equation~47! can be seen to be of smaller order of magnitude than Eq.~46!, exactly as Eq.~44! is seen to dominate Eq.~45!.
Also, adding the probabilities in Eq.~44! and Eq.~46! gives

Prob$Eq. ~40!øEq. ~42!%5
b3~a1b11b2!~2a1b11b2!~b11b21b3!2

~b11b2!$~a1b11b2!~b11b21b3!1a~b11b2!%
m2~,3!~a1b11b21b3!n32~,312!.

~48!

We must also consider configurations of the form

~49!

which have probability

Prob$Eq. ~49!%5b3
2 (

s5,212

,32~,212!

m2~s!m2~,32s!

5Prob$Eq. ~40!øEq. ~42!%OX,1~,22,1!$~,322,2!∨0%3

,32,2
g1

,1S g2

g1
D ,2C. ~50!

In a manner similar to the 0-1-2 case, we can show that all other failure configurations of a 0-1-2-3 bundle are do
by the configurations described by Eq.~40! and Eq.~42!. Accounting for the discrepancy in the probability of Eq.~42! when
p< i ,p1L exactly as in the 0-1-2 bundle, forl35E@T#5( i 5p

p1n321Prob$Yi51% we finally have the result

l3~n3!5~n32,3!@C2m2~,3!#~a1b11b21b3!n32,3H 16OX 1

,1
1

1

,22,1
1

L

,32,2
1

L

n32,3
1

,1$~,222,1!∨0%3

,22,1
g1

,1

1
,1~,22,1!$~,322,2!∨0%3

,32,2
g1

,1S g2

g1
D ,2CJ ~51!

where

C25
b3~a1b11b2!~2a1b11b2!~b11b21b3!2

~b11b2!~a1b11b21b3!2$~a1b11b2!~b11b21b3!1a~b11b2!%
5

~g22g3!~11g2!~12g3!2

g2~12g2!~12g2g3!
.

The Poisson approximation error can be bounded exactly as in the 0-1-2 case. It turns out to be of the order of the e
in Eq. ~51! and, including that as well, we can takem3(n3)5l3(n3) as the probability of failure of the 0-1-2-3 sub-bundl

E. Strength of a 0-1-2-̄ -r sub-bundle

The above steps generalize from a0-1-2-̄ -( j 21) sub-bundle to a0-1-2-̄ - j sub-bundle and can be carried o
indefinitely. For the0-1-2-̄ - j , j >2 sub-bundle, which isnj fibers long, the dominant failure configurations are

~52!

and
026102-11
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~53!
a
t

and evaluating their probabilities as before, we have

m j~nj !5~nj2, j !@Cj 21m j 21~, j !#~a1b11¯1b j !
nj 2, j

3H 16OS d2 logg1
@,1∧~,22,1!# e
nj2, j

1
,1~,22,1!¯~, j 212, j 22!$~, j22, j 21!∨0%3

, j2, j 21

3g1
,1S g2

g1
D ,2

¯S g j 21

g j 22
D , j 21D J ~54!

where

Cj 215
~g j 212g j !~11g j 21!~12g j !

2

g j 21~12g j 21!~12g jg j 21!
.

e

a
e
e
r

f

02610
This is the relation between the probability of failure of
0-1-2-̄ - j and a 0-1-2-̄ - j 21 bundle and it brings ou
the hierarchical nature of the failure process.

Explicitly, at the largest scale, by substituting form j , j
51,2, . . . ,r 21, and takingnr to ben ~i.e., for a given load
the next largest bundle in the hierarchy is the full bundle! we
obtain

m r~n!5C0C1C2¯Cr 21,1~,22,1!~,32,2!¯~, r2, r 21!

3~n2, r !a
,1~a1b1!,22,1

¯~a1b1

1¯b r 21!,r2,r 21~16«!, ~55!

where
«5OS d2 logg1
@,1∧~,22,1!# e

~n2, r !∧@∧ j 51
r ~, j2, j 21!#

1 ∨
j 52

r )
m52

j

$~,m212,m22!~gm21 /gm22!,m21%$~, j22, j 21!∨0%3

, j2, j 21

D ~56!
r
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where terms involving,p ,p<0, have been dropped. W
have also used the identitya1b11¯1b r51. The error
term is greatly simplified if, j<2, j 21 since the second term
in Eq. ~56! vanishes. Also note that

)
j 51

r

Cj 215~12g1!~12g r !

3)
j 52

r
~g j 212g j !~11g j 21!~12g j !

g j 21~12g jg j 21!
. ~57!

We have shown so far that the probability of failure of
bundle in the composite with discretely distributed fib
strengths is given by Eq.~55!, and the dominant failure mod
of this bundle, when theg j ’s and, j ’s are such that the erro
term « in Eq. ~56! is small, is that failure is initiated by the
failure of a 0-1 sub-bundle, which causes the failure o
0-1-2 sub-bundle, and so on~Fig. 2! until a 0-1-2-̄ -r
sub-bundle fails. The dominant failure modededucedhere is
r

a

very similar to Smith’s dominant failure mode valid only fo
larger which underlies Eq.~8!; the ‘‘fiber adjacent to a fiber
break’’ in Smith’s argument corresponds to a ‘‘sub-bund
encompassing a failed sub-bundle’’ in the present calcu
tion. We note, however, that this structure is unlike that
Newmanet al.’s @28# hierarchical bundle model. We next us
Eq. ~55! to bound the failure probability of a large bund
whose fiber strengths are continuously distributed accord
to the power distributionF(x)5xr,0<x<1, and will notice
further similarities there between Smith’s formula and t
present formula.

III. BUNDLES WITH CONTINUOUSLY DISTRIBUTED
FIBER STRENGTH

We now use Eq.~55! to estimate the strength distributio
Gn(x) of an n-fiber bundle under local load sharing an
whose fiber strengths are distributed according to the po
law
2-12
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F~x!5xr1@0<x<1#11@x.1# , ~58!

wherer is the shape parameter of the distribution. To do
we must discretizeF(x). For simplicity, we restrict the ap
plied load per fiber to take on one of the discrete values

xk5
1

Kk2c
5

1

11~k2c/2!
, k50,1,2, . . . , ~59!

wherec is an arbitrary integer chosen sufficiently large,
described below.~Recall from Sec. II A thatK, denotes the
load concentration on a fiber adjacent to, fiber breaks, and
specifically thatK,511,/2 according to the assumption o
idealized local load sharing.! According to Eq.~59!, then,xk
refers to the smallest load which causes catastrophic bu
failure if k2c breaks occur adjacent to some survivor.
other words,k2c is the critical cluster size for loadxk @see
text below Eq.~8!#. x1 ,x2 ,x3 , . . . ,xk , . . . form a decreas
ing sequence of possible applied loads per fiber with li
zero. We will be interested in the asymptotic behavior
Gn(x) whenx5xk andk becomes large. For the time bein
however, all the calculations up to the end of this section w
treatk andxk as fixed, where we keep in mind thatk2c is a
‘‘critical cluster size’’ associated with bundle loads fromxk
up to xk21 .

Given k and F(x), we consider bounding distribution
FI k(x) and F̄k(x) defined as

FI k~x!5F~Kuxk!1@Kuxk,x<Kvxk#11@x.1# ~60!

and

F̄k~x!5F~Kvxk!1@Kuxk<x,Kvxk#11@x.1# , ~61!

whereu5( j 21)2c, andv5 j 2c and j 51,2, . . . ,k are cho-
sen to satisfy the inequalities aroundx. Thus, for allx we
have

FI k~x!<F~x!<F̄k~x!. ~62!

Figure 3 illustrates the power law distribution function f
r51.5 together with the bounding distribution function
based onc52 andk53. Thus there are three main ‘‘steps
in each bounding distribution, associated withj 50,1,2,3,
and the lowest nonzero discrete fiber strength and disc
bundle load per fiber value isx350.1.

We let Gn(x), Ḡn(x), andGI n(x) be the bundle strength
distributions corresponding to fiber strength distributio
F(x), F̄k(x), and FI k(x), respectively. Given Eq.~62!, it
turns out that

GI n~x!<Gn~x!<Ḡn~x!. ~63!

This can be seen by investigating realizations of fib
strength to construct a bundle and noting the monoto
nondecreasing nature of stress concentrations on s
ving fibers as fibers fail. For any realizationvF
02610
,

s

le

it
f

ll

te

s

r
c,
vi-

5$s1,s2, . . . ,sn% of i.i.d. fiber strengths drawn fromF(x) to
form a bundle, we can constructvFI 5$sI1 ,sI2 , . . . ,sIn%,
where

sI i511
c

2 d2cAsi

xk
21 e2, i 51,2, . . . ,n, ~64!

to represent an i.i.d. realization drawn fromFI k . Figure 3
depicts thesi→sI i transformation given in Eq.~64!. We see
that every bundle realizationvF is weaker than its corre
spondingvFI , since, for eachi, the fiber strengthsI i in vFI is
at least as strong as the correspondingsi in vF . Hence, the
failure probability of the set of allvFI ’s, GI n(x), must be
smaller for everyx than the correspondingGn(x). By a simi-
lar argument, it can also be shown thatḠn(x)>Gn(x).

For the discrete fiber distribution functionFI k(x) and for
fixed k we have the probability masses

aI 5xk
r ,

bI j5~K j 2cxk!
r2~K ~ j 21!2cxk!

r, j 51, . . . ,k, ~65!

for the k possible discrete fiber strengths. Similarly, corr
sponding toF̄k(x), we have

ā5~Kcxk!
r,

b̄ j5~K ~ j 11!2cxk!
r2~K j 2cxk!

r, j 51, . . . ,k21. ~66!

Also, we have the critical fiber failure sequence lengths, j
5c j2, j 51,2, . . . ,k, corresponding toFI k , and , j5c j2, j
51, . . . ,k21, corresponding toF̄k , and these actually de
termine thea and b probabilities and discrete strengths
the bounding distributionsF̄k andFI k .

This choice for, j maximizesmk(n)5GI n(xk); i.e., of all
possiblem in the power form, j5c jm, the choicem52

FIG. 3. An example of bounding a continuous power law dis

bution F(x) by discreteF̄k(x) and FI k(x). The continuous power
law hasr51.5, and the discretization usesk53 and c52. This
gives the lowest discrete fiber strength and bundle load per fi
value asxk5x350.1, which is whereFI 3(x) makes its first jump.
Note thatk2c518 is the critical cluster size for loadxk .
2-13
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satisfies] logmk /],j50 most closely, forj 51, . . . ,k. Simi-
larly, , j5c j2, j 51, . . . ,k21, minimizesḠn(xk). Thus, the
choice of, j is such thatGI n(xk) and Ḡn(xk) are nearly the
tightest possible bounds onGn(xk). With this choice of, j ,
we also see for bothFI k(x) andF̄k(x) that the error term Eq
~56! is O(1/c).

We now apply Eq.~55! to compute the probability o
failure of a0-1-2-̄ -k bundleGI n(xk) whose fiber strengths
are distributed according toFI k(x) and the applied bundle
load per fiber isxk . Observe that in this case

g j5K j 2c
2r , ~67!

so the first product in Eq.~55! becomes

)
j 51

k

Cj 215S 12
1

K1
rD S 12

1

Kr
rD

3)
j 52

k
~1/K j 21

r 21/K j
r!~111/K j 21

r !~121/K j
r!

~1/K j 21
r !~121/K j 21

r K j
r!

')
j 51

k F12S K j 21

K j
D rG5)

j 51

k F12S c~ j 21!212

c j212 D rG
')

j 51

k F12S 12
1

j D
2rG . ~68!

To further simplify Eq.~68! we note that

12S 12
1

j D
2r

'H 2r/ j for j . d3r e,
exp~2e22r/ j ! for j < d3r e, ~69!

where we have picked the transition point from one form
the other by comparing the numerical values of each form
the right side with the form on the left side. Then

)
j 51

k

Cj 21')
j 51

k F12S 12
1

j D
2rG'F~r!

~2r!k

k!
, ~70!

where

F~r!5)
j 51

d3r e exp~2e22r/ j !

2r/ j
'

d3r e!
~2r! d3r e expS 2E

0

d3r e
e22r/tdtD

'
d3r e!

~2r! d3r e21 exp$2 d3r eexp~22r/ d3r e !

12rEi~22r/ d3r e !1e22r%, ~71!

where Ei denotes the exponential integral

Ei~x!5E
2`

x et

t
dt, xÞ0.

The second product in Eq.~55! may be reduced as
02610
n

)
j 51

k

~, j2, j 21!5)
j 50

k21

$c~ j 11!22c j2%5S c

2D k ~2k!!

k!
.

~72!

Finally, the third product in Eq.~55! becomes

)
j 50

k21 H S 11
j 2c

2 D xkJ rc~2 j 11!

5xk
rc)

j 51

k21 S j 2cxk

2 D rc~2 j 11!S 11
2

j 2cD rc~2 j 11!

'~k2e!2r~2/c!rc expS 2
2r

xk
D S ~k! !2

k2~k11!D rc

. ~73!

Upon applying Stirling’s formulak!'A2pe2kkk10.5 and
making the substitutionk2c/2'1/xk for largek, we have

)
j 50

k21 H S 11
j 2c

2 D xJ rc~2 j 11!

'S 4p

c D rcS 2e

cxk
D 2rS cxk

2 D rc/2

3expS 2
2r

xk
22rcA 2

cxk
D . ~74!

Multiplying Eq. ~70!, Eq. ~72!, and Eq.~74!, we have for the
lower boundGI n(xk)

GI n~xk!5mk~n!5~n22/xk!:I ~c,r!S cxk

2 D ~r/2!~c24!11/4

3expS 2BI
2r

xk
D , ~75!

where

:I ~c,r!5F~r!S 4p

c D rc e2r

Ap
~76!

and

BI 511F2c2
ln ~4rc!

r GAxk

2c
. ~77!

A similar calculation may be carried out for the upp
boundḠn(xk). Manipulating the expression form r(n) in Eq.
~55! as before, we get

Ḡn~xk!5m~n!5~n22/xk!:̄~c,r!S cxk

2 D ~r/2!~c24!13/4

3expS 2B̄
2r

xk
D , ~78!

where

:̄~c,r!5F~r!S 1

2p D rc e22r

Ap

1

2c
~79!

and
2-14
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B̄512F2c1
ln~4rc!

r GAxk

2c
. ~80!

Equations~75! and~78! are the bounding probabilities o
failure of a LLS composite bundle under applied loadxk . It
is important to note that, while desirable, the boundsḠn(xk)
and GI n(xk) are not asymptotically convergent asxk↓0. In
fact,

Ḡn~xk!

GI n~xk!
;Axk expSA32r2c

xk
D , ~81!

which blows up asxk↓0.
In applying the Chen-Stein theorem to obtain Eq.~19!,

and also elsewhere, we made the approximation that,
small l, l'12exp(2l). Reversing this procedure pre
ently, we may write

GI n~xk!'12expF2~n22/xk!:I ~c,r!

3S cxk

2 D ~r/2!~c24!11/4

expS 2BI
2r

xk
D G ~82!

and

Ḡn~xk!'12expF2~n22/xk!:̄~c,r!

3S cxk

2 D ~r/2!~c24!13/4

expS 2B̄
2r

xk
D G , ~83!

on the basis of Eqs.~75! and ~78!.

IV. DISCUSSION

Despite not obtaining converging tight bounds ask in-
creases andxk decreases, the above forms ofḠn(xk) and
GI n(xk) suggest the following form for the strength distrib
tion of n-fiber bundles with power law distributed fibers.
writing it we drop the subscript inxk , and permitx to vary
continuously:

G̃n~x!512expF2~n22/x!:̃~c,r!S cx

2 D ~r/2!~c24!1w1

3expS 2B̃
2r

x D G , ~84!

where B̃511@w22 ln(4rc)/r#Ax/2c with 22c<w2<2c

and 1/4<w1<3/4. Also, :̃ must be bounded between:I and
:̄. If k is the critical cluster size as defined below Eq.~8!,
then fork@1, k'2/x. Thus, the (n22/x) term in the above
equation may be replaced withn2k. In the practically in-
teresting case ofn@k, this factor can simply be replaced b
n. It is also worth mentioning that, if the calculations of th
preceding sections had been carried out with circular, inst
02610
or

ad

of open boundary conditions, the factorn would have oc-
curred in place ofn22/x5n2k in the above equation.

Substituting Eq.~84! in Eq. ~4!, we obtain

H̃m,n~x!'12expF2m~n22/x!:̃~c,r!

3S cx

2 D ~r/2!~c24!1w1

expS 2B̃
2r

x D G ~85!

for the composite strength distribution. Note thatmn here
represents the volume of the composite. Equation~85! can
thus be interpreted as giving a size scaling for the compo
strength distribution.

Equation~84! is strikingly similar to that derived heuris
tically by Phoenix and Beyerlein@29# for the strength distri-
bution function in the present problem. Phoenix and Bey
lein’s formula is based on Smith’s formula, but additiona
accounts for the ‘‘stalling’’ of ak cluster in Eq.~8!, i.e., the
event that the continued propagation of ak cluster is blocked
by particularly strong fibers at its ends. Since their failu
event is a subset of Smith’s, their strength distribution fun
tion is no greater than Smith’s distribution function. For t
n-fiber bundle subjected to loadx per fiber, Phoenix and
Beyerlein@29# obtain

G5 n~x!512expF2n:5 ~r!S x

2D 23r/2

expS 2B5
2r

x D G ,
~86!

where

B5 5221/rF11
1

r2 S G~1/r,1!1
r

2~r11! D G ~87!

andG~1/r, 1! refers to the incomplete gamma function. Als
for :5 they have

:5 ~r!5
2re3r

25/235r/2 . ~88!

Comparing Eq.~84! and Eq.~86!, it is immediately seen
that the exponential factors are almost the same sincB̃

'B5 '1 in the lower tail, and the preexponential power fac
would also be almost the same~except forw1) if c51. We
will now show that for r>1 and takingc51, while the
bounding distributionsGI n(x) andḠn(x) @Eqs.~75! and~78!#
closely approximate Eq.~86!, where it is successful in cap
turing the actual bundle strength distribution~as seen from
simulations!, the bounds@especiallyḠn(x)] also succeed in
r,1 with c.1 where Eq.~86! breaks down.

The question thus arises as to the choice ofc. Clearly,
choosingc51 in Eq. ~60! and Eq.~61! will result in the
finest possible discretization, which nevertheless is coa
than the true fiber strength distribution. However, choos
c51 regardless of the value ofr may result in loose error
bounds@which vary asO(1/c)] in Eq. ~56!. Thusc should be
chosen large enough that the errors in Eq.~56! are small,
while not so large that it is an overly coarse discretization
the given power law distribution. When the fiber strengt
are power law distributed, it can be seen from Eq.~18! even
2-15
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in the simplest case of a 0-1 bundle thatc must increase asr
decreases in order to keep the error bound (2al1)/(,1b1)
constant for fixedl1 .

To determine the value ofc, empirical strength distribu-
tions of bundles ofn5220 fibers were generated from 211

Monte Carlo replications of bundle failure under idealiz
local load sharing. The simulation algorithm is the static v
sion of Newman and Phoenix’s@27# time-dependent simula
tion algorithm. We used this algorithm to calculate the e
pirical distribution down tor51/128. For smallerr than this,
numerical round-off errors seem to become a problem
fact, the upper tail of the calculated empirical distribution f
r51/128 is not reliable for this reason. Figures 4 and 5 sh
the empirical strength distributions on Weibull probabili
paper for a range ofr, the power law exponent, which in
versely governs the fiber strength variability. Also shown
the upper and lower boundsḠn and GI n . Within the prob-

FIG. 4. Comparison of Monte Carlo~MC! generated empirica
strength distributions with the upper and lower bounds on
strength distribution whenr>1. The upper and lower bounds a
calculated only at the points@x5xk , Eq. ~59!# shown; the lines are
C-spline interpolations between these points, intended merel
guide the eye. For all theser, it suffices to assume thatc51, as
seen in Table I.

FIG. 5. Comparison of Monte Carlo~MC! generated empirica
strength distributions with the upper and lower bounds on
strength distribution for 0,r,1. The upper and lower bounds a
calculated only at the points@x5xk , Eq. ~59!# shown; the lines are
C-spline interpolations between these points. Note thatc.1 andc
increases with decreasingr as seen in Table I.
02610
-

-

n
r
w

e

ability range of the simulations, especially for largerr, k
given by Eq.~59! is so small that the approximations mad
to obtain the asymptotic formulas Eq.~75! and Eq.~78! be-
come inaccurate. Therefore the bounds plotted in these
ures are obtained by evaluating the products directly;
example, the lower bound plotted in these figures is obtai
by evaluating the products on the left hand side of Eq.~70!,
Eq. ~72!, and Eq.~74!, at eachx5xk given by Eq. ~59!.
@Recall from Eq.~59! that the corresponding critical cluste
size is given byk2c.] The figures also show curves connec
ing the calculated distribution function values at differentx
5xk . These smooth curves are obtained by numerical in
polation withC splines.

Figure 6 shows the predictions of Smith’s formula, Pho
nix and Beyerlein’s model, and the presently calculated
per and lower bound formulasḠn and GI n , together with
Monte Carlo simulation generated empirical strength dis
butions on the same plot, for each ofr51, 5, and 10, for
comparison. As in Figs. 4 and 5, the bounding distributio
are calculated only atx5xk , given by Eq.~59! but interpo-
lated usingC splines. Also, the abscissaxk for each point in
the curve plotting Smith’s formula corresponds to an integ
k according to (11k/2)xk51. ~Note that we distinguish be
tween Smith’s abscissasxk and ourxk’s.) As is clearly seen,
the Smith and the Phoenix and Beyerlein formulas coinc
for r510. However, a small divergence is already seen
r55, which widens atr51. As stated earlier, the Phoen
and BeyerleinG5 n of Eq. ~86! is less than that of Smith’s
formula owing to its stricter definition of composite failure

e

to

e

FIG. 6. Comparison of Monte Carlo~MC! generated empirica
bundle strength distribution with Smith’s formula, Phoenix a
Beyerlein’s formula, and the presently calculated upper and lo

bound formulasḠn , andGI n ~assumingc51) for r51, r55, and
r510.
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Also, in comparing with the empirical strength distributio
obtained from Monte Carlo simulations, we find that Phoe
and Beyerlein’s formula generally deteriorates as an appr
mation of the empirical distribution with decreasingr. The
calculatedḠn andGI n , however, continue to bound the em
pirical distributions even at smallr, and, in fact, it appears
that the upper boundḠn becomes an increasingly good a
proximation of the empirical distribution asr decreases.

We now consider how Smith’s formula should be mo
fied so as to succeed in fitting the empirical strength dis
bution at lowr as well. Comparing Smith’s formula Eq.~8!
with the components ofGI n(x), we first observe from Eq
~74! that it approximately corresponds to the produ
K1

rK2
r
¯Kk21

r xkr in Eq. ~8!. Thus the essential differenc
between Eq.~8! and GI n(x) given by Eq.~75! is that the
product of Eq.~70! and Eq.~72! replaces the factor 2k in Eq.
~8!. This product is

@Eq. ~70!3Eq. ~72!#'F~r!
~2r!k

k! S c

2D k ~2k!!

k!

'F~r!
~4rc!k

Apk

'F~r!S cxk

2 D 1/4

~4cr!A2/cxk. ~89!

The important point here is that the factor 2k in Smith’s
formula is replaced by a factor that varies
F(r)(4rc)k/Apk. To compare with Smith’s prefactor o
2k, we observe that Smith’s critical cluster size isk, while
the present calculation’s critical cluster size isk2c, for a
fixed stress level. Equating these two, we find that the cor
prefactor in Smith’s formula should be

@F~r!A4 c/Ap# f Ak/A4 k, f 5~4rc!1/Ac. ~90!

In this, f Ak/A4 k represents the part that varies withk.
Figure 7 plots the variation of this prefactor for a range

k. In calculatingf for different r, the values ofc from Table
I have been assumed. The figure also shows a line co
sponding to Smith’s prefactor of 2k. Scaling Eq.~90! ~i.e.,
sliding the curves down vertically in Fig. 7! for r53, 5, and
10 will bring the prefactor of Eq.~90! into approximate
agreement with Smith’s 2k curve in the smallk regime of the
present Monte Carlo simulations.@The lowest stress leve
attained in ther55 simulation of Fig. 6, ln(x)'21.5, corre-
sponds approximately tok57.# For largerk corresponding to
the deep lower tail beyond the reach of present simulatio
Fig. 7 suggests the breakdown of Smith’s and Phoenix
Beyerlein’s formulas even for larger. At smallr, where even
within the regime of the simulations the critical cluster sizek
is large, Fig. 7 clearly demonstrates the reason for the br
down of the heuristic formulas: A pronounced gap betwe
Smith’s 2k curve, and that obtained from Eq.~90!. At r51/
128, the prefactor actually decreases slowly with increas
k, unlike 2k.

The conclusions above are also true for the upper bou
where the corresponding factor in terms of applied stres
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F~r!

2cAp
S cxk

2 D 3/4

~4cr!A2/cxk. ~91!

It was noted in Sec. I that Smith’s model assumes that
two fibers adjacent to ak cluster are fresh, and the failur
probability of at least one of them is approximate
2F(Kkx). However, the fibers may have seen some pr
load which would decrease their conditional probability
failure @Eq. ~9!#, especially for smallerr. This correction was
also noted as being excessive. In view of the above disc
sion, it may therefore be inferred that the product of t
corrections must have the form given by Eq.~90!.

V. CONCLUSIONS

By using the Chen-Stein theorem for Poisson approxim
tions, we have bounded the strength distribution of a pla
LLS composite bundle@and composite, using Eq.~4!# with
fibers whose strengths are distributed according to a po
law distribution F(x)5xr1@0<x<1#11@x.1# . The bounds,
especially the upper one, seem to be reasonably good

FIG. 7. Variation of the prefactor Eq.~90! with k for different
values ofr. The unmarked curves belowr51 correspond tor51/2,
1/4, 1/8, 1/16, 1/32, and 1/64 as one moves downward. Also sh
here is a line for Smith’s prefactor of 2k. The rate of increase of the
prefactor from Eq.~90! is clearly slower than that of Smith’s
for all r.

TABLE I. Variation of the parameterc with r as determined by
Monte Carlo simulations of large bundle failure.
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proximations of the actual composite distribution for allr as
seen in comparisons with Monte Carlo simulations. The f
that such bounding is possible also shows that the compo
failure mode is brittle for allr. The closed form expression
for the bounds also allow us to see what was unknown
fore: Smith’s formula Eq.~8! can predict the strength distr
bution for all r if its prefactor 2k is corrected to Eq.~90!.

The next questions of obvious interest are those
whether these results apply to other, similar model mater
and if so, to what extent? While it would be incautious
speculate on answers, for experience shows that the stre
of a random heterogeneous material depends subtly and
sitively on the details of its microscopic flaw strengths a
micro-mechanical load redistribution, we will now briefl
describe some of the questions.

The power law probability measure assumed in this w
has a compact support on@0,1#. More realistic probability
distributions for fiber strength, such as the Weibull distrib
tion Eq.~5!, may, however, have a heavy upper tail whenr is
small ~although the realism of this is certainly open to que
tion since the fiber strength is ultimately bounded by
atomic bond strength!. Qualitatively, a heavy upper tail im
plies a sizable probability that a growing cluster of fib
breaks will encounter a particularly strong fiber which m
block its advance. Whether such hindrance to cluster gro
will impact the overall statistics of composite strength in t
lower tail and give it a tough character forr,r th , wherer th
is some threshold, is unknown, especially for realistic bun
sizes far beyond current numerical simulation capability.

While the above pertains to fiber strength randomness
concern of the following questions lies in the load sharing
partially damaged composite bundles. We must first note
LLS in a planar composite bundle is a severely localiz
form of load sharing, which best encourages the extensio
a crack~cluster of breaks! by failing strength elements~fi-
bers! surrounding it. That is, it encourages brittle fracture.
reality, load sharing is more long range. While the grea
stress concentration around a cluster of breaks still occur
the neighbors of a cluster, fibers further away also typica
carry some overload. To describe this situation parame
cally, we may think of overload decay away from a fib
break as occurring according to

Kı5K0 /ın, ~92!

whereK0 is the stress concentration on the two intact nei
bors of a broken fiber,ı51 indexes the two fibers adjacent
a single fiber break,ı52 the two subadjacent fibers and
on. It is easy to see thatn5` corresponds to LLS, whilen50
corresponds to ELS described in Sec. I. Also, the load s
ing scheme due to Hedgepeth, realistic for an elastic bon
fiber and matrix, corresponds ton52. Knowing thatn50
~ELS! corresponds to a tough failure mode~Daniels@1#! and
n5` ~LLS! to a brittle mode, a natural question is the fo
lowing: Is there a sharp boundary in ther-n plane that sepa
rates it into a brittle regime and a tough regime? If so,
location would be interesting from both theoretical and pr
tical standpoints.
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The lessening of the stress concentration ahead of a b
which may lead to an overall tough failure mode can a
occur for other reasons. In a three-dimensional LLS bun
~Smith et al. @30#!, a greater number of fibers surround
broken fiber than in a two-dimensional bundle. This lowe
the probability that an intact fiber ahead of a break will bre
and qualitatively could result in an overall tough failu
mode at least for some range ofr. Similarly if, unlike in the
present model, fiber breaks were allowed to be stagge
along the length of a bundle, the stress concentration cau
by a cluster of breaks would be lowered below that cau
by a cluster of transversely aligned breaks. It is not known
this impels the overall statistics toward the tough failure
gime.

In view of these and many other unresolved questio
about the fracture behavior of a composite, a prototypi
random heterogeneous material, it can be safely stated
there is a long way to go before one can claim a reasona
comprehensive understanding of the extreme value de
dence between the microscopic fracture processes and
fracture. Piecing together such understanding will requ
blending together physical reasoning, probabilistic meth
ology, computational techniques, and experiments. Rely
exclusively on computer simulations of small system
(,104 fibers! is likely to result in inconclusive, or worse
incorrect understanding of the complex strength statistics
these material systems.
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APPENDIX A: THE CHEN-STEIN METHOD

As described by Arratiaet al. @31#, the Chen-Stein
method of Poisson approximation is a powerful tool for co
puting an error bound when approximating probabilities
ing the Poisson approximation. LetI be an arbitrary index se
and suppose$Yi ,i PI % are 0–1 Bernoulli random variable
with pi5Prob$Yi51%.0. Thenpi5E@Yi # and we let

l5(
i PI

pi and T5(
i PI

Yi . ~A1!

Also let W be a Poisson random variable with me
lP~0,̀ !. For eachi PI let Ji denote an arbitrarily chosen se
of near neighborsof i and let

Vi5T2 (
j PJi

Yj . ~A2!

We think of Ji as the neighborhood of dependence ofi such
thatYi is independent or nearly independent ofYj for j ¹Ji .
Then forA#Z1 the Chen-Stein theorem asserts that
2-18
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uProb$TPA%2Prob$WPA%u

<D f(
i PI

(
j PJi

pipj1D f(
i PI

(
j PJi

E@YiYj #

1U(
i PI

E$~Yi2pi ! f ~Vi11!%U
5b11b21b3 , ~A3!

where f is a function for whichi f i<min(1,1.4l21/2) and
D f <min(1,1/l). Theb1 ,b2 ,b3 notation was given by Arra-
tia et al. @31#. Loosely,b1 measures the neighborhood siz
b2 the expected number of neighboring occurrences o
given occurrence, andb3 the dependence between an eve
and the number of occurrences outside its neighborhoo
dependence.

APPENDIX B: DOMINATED CONFIGURATIONS
OF A 0-1-2 BUNDLE

It will be shown here that all other configurations listed
Sec. II C 1 have probability whose order of magnitude
smaller than Prob$Eq. (23)øEq. (26)%. We begin with the
configurations Eq.~21! and Eq.~22!. Their union starting at
fiber i is a subset of the event
02610
,
a
t
of

s

~B1!

so that

Prob$Eq. ~21!øEq. ~22!%

<Prob$Eq. ~B1!%

5Prob$Eq. ~23!øEq. ~26!%O~g1
L!. ~B2!

Next consider the superset of events Eq.~24! and Eq.~25!:

~B3!

Here we have

Prob$Eq. ~24!øEq. ~25!%

<b2~b11b2!~a1b11b2!n22~,212!

3 (
s5L

,22~,112!

asm1~,22s!

5Prob$Eq. ~23!øEq. ~26!%O~g1
L!. ~B4!

By a similar calculation, it may be seen that the probab
ity of Eq. ~27! is also Prob$Eq. (23)øEq. (26)%O(g1

L). Next
for Eq. ~28! we have
Prob$Eq. ~28!%5b2
2~a1b11b2!n22~,212! (

s5,112

,22~,112!

m1~s!m1~,22s!

<
b2

2C0

6~a1b11b2!2 ~a1b11b2!n22,2m1~,2!S ,1@~,222,1!∨0#3

,22,1
g1

,1D
5Prob$Eq. ~23!øEq. ~26!%OS ,1@~,222,1!∨0#3

,22,1
g1

,1D . ~B5!

Note here that if

,1~,222,1!3

,22,1
g1

L5V~1!

the contribution of Prob$Eq. ~28!% will be quite substantial in comparison to Prob$Eq. (23)øEq. (26)%. Next,

Prob$Eq. ~29!%<b2~C0,1a,1!~a1b1!,22,1 (
s50∨~,222,1!

,22~,113!

a,22,12s21~a1b11b2!n22~,211!2~,22,12s21!

<
b2a2

~b11b2!~a1b11b2!2 ~a1b11b2!n22,2
m1~,2!

,22,1

5Prob$Eq. ~23!øEq. ~26!%OS 1

,22,1
D

2-19



r
th

n

i-
e

ess

,

-

r-

of

S. MAHESH AND S. L. PHOENIX PHYSICAL REVIEW E69, 026102 ~2004!
and

Prob$Eq. ~30!%<b2~,1b1
2a,1!~a1b11b2!n22~,211!

3 (
s5,22~,112!

,221

~a1b1!s

<
b2~a1b11b2!

12~a1b1!
~a1b1

1b2!n22~,212!
m1~,2!

,22,1

5Prob$Eq. ~23!øEq. ~26!%

3O„1/~,22,1!….

Finally, we have

Prob$Eq. ~31!%<~,1a1
,1b1

2!~a1b1!,2

5Prob$Eq. ~23!øEq. ~26!%

3OS ~a1b1!,1

,22,1
D . ~B6!

Adding all these probabilities, we have forp1L< i ,p
1n22,221

Prob$Yi51%5
b2~a1b1!~2a1b1!~b11b2!2

b1~a1b11b2!2$~a1b1!~b11b2!1ab1%

3m1~,2!~a1b11b2!n22,2

3H 16OS g1
L1

,1$~,222,1!∨0%3

,22,1
g1

,1D J .

~B7!

As in the 0-1 case, we turn our attention next to the failu
configurations that start very close to the boundary of
0-1-2 subcomposite. That is, we consideri such thatp< i
,p1L and evaluate the probabilities of the configuratio
listed in Sec. II C 1. Equation~32! continues to hold for
Prob$Eq. ~23!%. However, the event Eq.~26! may be decom-
posed according to whetheri<s or not:

~B8!

If i .s, the configuration remains Eq.~26! with s constrained
to lie in the range 1<s, i . Prob$Eq. ~26!% is now given by
02610
e
e

s

Prob$Eq. ~26!%5~b11b2!b2
2

3 (
s5 i 2p11

L21

(
t50

s21

as1tm1~,22s!

3~a1b11b2!n22~,21t13!

1b2
2(

s51

i 2p

asm1~,22s!

3~a1b11b2!n22~,212!. ~B9!

The first term in Eq.~B9! reduces to Eq.~33!. The second
term when simplified becomes

a2b2
2

~a1b1!~b11b2!1ab1
m1~,2!~a1b11b2!n22~,212!

3@12~g1g2! i 2p11#H 16OS 1

,1
1

1

,22,1
D J . ~B10!

That the probability of all the other configurations is dom
nated by Prob$Eq. (23)øEq. (26)% may be seen in the sam
way as before.

Next consider the casei 5p21. Then

Prob$Eq. ~23!%5
~a1b1!b2

b1
m1~,2!~a1b11b2!n22~,211!

~B11!

and

Prob$Eq. ~26!%5
ab2

b1
m1~,2!~a1b11b2!n22~,211!.

~B12!

APPENDIX C: POISSON APPROXIMATION ERROR
FOR A 0-1-2 BUNDLE

We now bound the Chen-Stein errorb11b21b3 arising
from the Poisson approximation of the dependent proc
Yi . We begin by definingJi5$ j :u j 2 i u<,21L11% so that
random variablesYi and $Yj : j ¹Ji% are independent and
consequently,b350. As before,

b1<min~1,1/l2!2~n22,221!~,21L11!

3@l2 /~n22,221!#2

5min~1,1/l2!2~,21L11!l2
2/~n22,221!. ~C1!

Boundingb2 requires finding pairs of failure configura
tions such thatYiYj51,j PJi . If one or both ofYi and Yj
arise from a configuration different from Eq.~23! and Eq.
~26!, we know that the probability of the resulting ove
lapped configuration is Prob$Eq. (23)øEq. (26)%O„,1

21

1(,22,1)21
…. Therefore we need consider only overlaps

Eq. ~23! and Eq.~26!.
Configurations of the form Eq.~23! may overlap them-

selves to produceYiYj51, for j PJi as
2-20
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~C2!

and

~C3!

or they may overlap configurations Eq.~26! as

~C4!

and

~C5!

Turning next to configurations in which Eq.~26! overlaps itself, we haveYiYj51,j PJi , when

~C6!

and
026102-21
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~C7!

and finally for configurations in which Eq.~26! overlaps Eq.~23! to produceYiYj51,j PJi , we have

~C8!

In bounding the probability of these configurations the configuration

~C9!

arises repeatedly and has probability

Prob$Eq. ~C9!%<b2 (
s250

L21

~a1b1!,22s22~,112!~,22s22,121!5l2OS 1

~a1b1!LD . ~C10!

With this result in hand, it is readily seen that Prob$Eq. (C2)%5l2
2O„(a1b1)2L

… since the probability of the fiber arrange
ment to the left of the second pressured element 2 is bounded from above byl2 , the arrangement to the right of the seco
pressured element has probability bounded from above byl2O„(a1b1)2L

…, and these two events are independent.
Similar arguments for the other configurations establish that the Poisson approximation error isl2O„l2 /(a1b1)L

…. Since
l25o(aL), the Poisson error is bounded more loosely byl2O„aL/(a1b1)L

…5l2O(g1
L).
61 h.
@1# H. E. Daniels, Proc. R. Soc. London, Ser. A183, 405 ~1945!.
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